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WORKSHOP SCHEDULE
Modules

e 1.Intro to R and data analysis

2. Statistical inference & hypothesis testing

3. Modeling correlation and regression
4 Mapping causal & predictive approaches

5. Machine Learning
6. Extra topics:

 MetaboAnalyst;
* Power Analysis

Each day will include:
* Frontal class (MORNING)

* Practical training with R about the topics discussed in the morning.
(AFTERNOON)
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DAY 2 — LECTURE OUTLINE

(.

Purpose and foundations of inferential statistics
* Probability and random variables
* Meaningful probability distributions
* Sampling distributions and Central Limit Theorem

.

* Getting to know the “language” of hypothesis testing
* The null and alternative hypothesis
* The probability of error? (a or “significance level")

* The p-value probability and tests interpretation
* Confidence Intervals

* Types of errors (Type 1 and Type 2)
» Effective vs statistical significance

* Hypothesis tests examples
* Comparing sample mean to a hypothesized population mean (Z test & t test)
* Comparing two independent sample means (t test)
* Comparing sample means from 3 or more samples (ANOVA)

* Acloser look at testing assumptions (with examples)
* Testing two groups that are NOT independent
* Testing if the data are not normally distributed: non-parametric tests
* Testing samples without homogeneous variance of observations
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Inferential Statistics: population and samples

Gathering all data is not always possible due to barriers like time, accessibility, or cost.
Therefore, we often gather information from a smaller subset of the population: a SAMPLE.
* POPULATION = the universe of all possible observations we are interested in

 SAMPLE = a subset of the population from which information is actually collected

[ * INFERENTIAL STATISTICS = a collection of methods for using sample data to make

conclusions about a population

Population (or
Inference

Experiment)
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Inferential statistics workflow: defining a population

Decide which population(s) is (are) important
* We may need 2 of them—control and treated groups—according to the experimental design
 Statistical populations are something the investigator defines

Decide which attributes of the population(s) need to be measured
* Variable(s) to measure
* (..not all relevant information are MEASURABLE)
» often the literature can provide information about the general population we are studying

Producing Data

Resea.rCh Population —
question...

T )
S y
T r
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Inferential statistics workflow: producing data

* Pick a representative sample

 Asampleisa subset of a population that has been selected to be representative
(or unbiased), i.e. it REFLECTS the characteristics of the entire population

* ideally, a random sample, where each individual has a known, non-zero probability of
being selected into the sample

* Estimate the population parameter
* From arepresentative sample, we

can calculate a point estimate of :
. Producing Data
the population parameter

(unknown)

* Estimate uncertainty

e Sampling error: any point estimate Population —
from the sample will be imperfect
(it won’t exactly match the true
population value)

Inference ‘“‘\“‘\\ y \

S, ability

Source image: https://stats.libretexts.org/Courses/lumen_Learning/
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Inferential statistics workflow: making inference based on
sample

Formulate hypotheses to test through experiments:

» features of a population

* interaction of dependent and independent variables
* degree of uncertainty and error

Generalize findings to population of interest, assessing:

Producing Data

e construct validity
* validity of causal relationship
* generalizability

Population —

Inference

--...____'_'j_-_-_-_-_-_-: :"'\}_%_—_,.f’;. Probability

Source image: https://stats.libretexts.org/Courses/Lumen_Learning/
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Population versus sample: terms

Measurement

Mean

Standard deviation

Variance

Proportion

Correlation

Regression
coefficient

Sample
statistic

Population
parameter

M (mu)
o (sigma)
o2 (sigma squared)
Tt (pi)
p (rho)

B (beta)

Source: https://www statology.org/statistic-vs-parameter/
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Probability
and
random variables
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Probability & statistical models (in frequentist approach)

e Data are observed values («realizations») of random variables.

* The probability distribution of these random variables can be used to reason
about properties (‘parameters’) of the unobserved universe (inference).

 Statistical models are probability distributions for observable data constructed to
enable inferences to be drawn or decisions made from data

* From observation to theoretical probability:

Nfavorable events

* Absolute frequency (af) = 1¢4y0rabie events Relative frequency (rf) =
Nopservations

* Relative frequencies also serve as “empirical probabilities”, [between 0 and 1].

Nfavorable events

* Relative frequency = Probability of an event (p) =
Npossible events

* The relationship between Absolute Frequency and Probability is further
reinforced by the Law of Large Numbers

Relationship (af - probability) =p = bl_iénN rf
l

(By conducting a larger number of trials or observations)
we can derive probabilities from absolute frequency!

11/02/2025 https://lulliter.github.io/R4stats/ 10



The Law of Large Numbers allows us to use probability to

predict absolute frequency and viceversa

Draw observations at random from any population with finite mean u. As the number of

observations drawn increases, the sample mean of the observed values x gets closer and closer to
the mean u of the population.

Example: How sample means approach the population mean (u = 25).

Mean of first n observations

35
34
33
32
31
30
29
28
27
26
25
24
23
22

1] 1 ] 1 1] 1] 1 | ]
10 50 100 500 1000 5000 10,000
Number of observations, n

—
U=
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Random Variables and probability distributions

Discrete Random Variables

Continuous Random Variables

e can take a finite number of distinct values
* e.g. # of children per family

* can take an infinite (or impossible to count)
number of possible values

* e.g. weight of a person

2 types of probability distributions

PROBABILITY DISTRIBUTION

PROBABILITY DENSITY FUNCTION

The probability distribution describes the
likelihood of the variable to take a possible
individual value.

It is called: Probability Mass Function (PMF)
Py(x;) = P(X = x), fork =1,23..

the
probability distribution describes the

likelihood of the variable to fall within an
interval of values.

It is called: Probability Density Function (PDF)

Pla< X < b] = [ f(x)dx

11/02/2025
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Random Variables and probability distributions

Discrete Random Variables

Continuous Random Variables

SOME “FAMOUS” DISTRIBUTIONS

* Bernoulli Random Variable X~Bernoulli(p)

* applicable to random experiments that can only
have 1 trial and only 2 possible results -like above
(e.g. pass/fail, head/tail)

* Binomial Random Variable X~Bin(n,p)

» applicable to Bernoulli experiments (2 possible
results), but here we can have 1 or more trials
(e.g. probability that # patients will experience
side effects from a new medication)

e Poisson Random Variable X~Poisson(A)

* used to show how many times an event will occur
within a given time period — knowing events
occur independently and with a constant mean
rate (e.g. # of meteorites striking Earth in a year)

Normal Random Variable X~(p,02)

more on its feature later... (e.g. birthweight of
newborn babies, shoe sizes, diastolic blood
pressure, ...)

Exponential Random Variable X~Exp(A)

refers to the process in which the event happens
at a constant average rate independently and
continuously (e.g. , the amount of time until an
earthquake occurs, amount of time a car battery
lasts)

11/02/2025

https://lulliter.github.io/R4stats/ 13




11/02/2025

Meaningful probability
distributions for inference

The normal distribution
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The normal distribution (special case of continuous distr.)

Normally distributed Random Variable
X~ Normal (p,02)

with ><
Probability Density Function |
00 1 _x-w? |

xX) = e 20 i

V2mo? i

.

* The normal distribution («bell curve» or «Gaussian curve») is extremely important in
statistics because:

e it provides an excellent summary of an empirical distribution providing 2 parameters: the
mean (i) and standard deviation (o)

* many things in real life (and experimental science) can be approximated with it (e.g. blood
pressure, height, weight, age children get disease, standardized test scores, etc.)

* Measurement error with scientific instruments is typically modelled as a normal
distribution with expectation pu=0. The more precise the instrument, the lower the value of
the variance o?.

11/02/2025 https://lulliter.github.io/R4stats/ 15



Features of the normal distribution

* Normal distributions are symmetric around the mean

* The mean, median and mode of a normal distribution are equal

* Normal distributions are denser in the center and less dense in the tails

* Thearea under the normal curveis=1

* 68% of the area of a normal distribution is within 1 standard deviation of the mean

e Approximately 95% of the area of a normal distribution is within 2 standard deviation of the
man

X~ Normal (u,02)

u-3c u-20 L K pu+o pn+20 u+3c _ 15 _% u-c u p+c +%20 +3c
i H B H

11/02/2025 https://lulliter.github.io/R4stats/ 16
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From population, to sample, to sampling distribution

* A sampling distribution shows the frequency distribution of n sample
means (e.g. X1, Xy, X3, X4... X,), assuming that we take several random
samples of the population

* with large n it approximates a normal

Population Sample Sampling
Distribution Distribution Distribution

11/02/2025 Source image: hittps://WiWweryoutubecdis/watch ?v=757]75d3GM4
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Dealing with the uncertainty of point estimates

» The premise of (frequentist) statistics is that we can approximate a hypothetical population
parameter by studying (or simulating) several samples from from it

* A point estimate (e.g. x) will always have a degree of uncertainty:

* sampling error = the variability or ‘noise’ that comes with the process of taking repeated samples
from a population of interest (i.e. each sample will be a little different)

» standard error = a quantitative measure of sampling error variation (the standard deviation of the
estimate’s sampling distribution)

population distribution :

——istandard deviation

I
1mean
I
1

variable of interest

sample observations sample standard deviation
O O @O 00 @ @)
sample mean

sampling distribution of the mean .

1
| standard error

I
1mean of the sample means
1
1

sample mean

11/02/2025 Source image: hiitps://vifdatazolg/slides/16/36-uncertainty-l.html#/ 19
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Central Limit Theorem and Sampling Distributions

PROBLEM: How often do we know what the population of values looks like?
e (i.e. what if the observations in our sample are not normally distributed?)

SOLUTION: the Central Limit Theorem provides a bridge between (a) the
nice properties of the normal distribution and (b) the fact that the
distribution of individual elements of many samples are not normally
distributed

Theorem (Central Limit Theorem)

Given a population with a finite mean u and a finite non- zero variance o2, the sampling
distribution of the mean approaches a normal dlstrlbutlon with a mean of u and a variance of
02 /N as N, the sample size, increases.

_____________________________________________________________________________________________________________________________________________

11/02/2025 https://lulliter.github.io/R4stats/ 20



CLT: fundamental for inferences about a population

based on a sample

CLT: regardless of the shape of the population distribution, if we take several
random samples from a population and look at all their mean: X =x4,x5,... X,, :

* by the Central Limit Theorem, the distribution of sample means X (a
“sampling distribution”) will have a normal (or near normal) sha(Pe with mean

E(X) = p (= the population’s) and standard deviation oy === SE (this
is called Standard Error, < than population’s)

* |IFnislarge enough and
* |F samples are taken at random

oA pA Gaussian
samples
of size n
X .
— [
X
4
population sampling distribution
distribution of the mean

11/02/2025 https://lulliter.github.io/R4stats/ 21



Important implication of the CLT

Sample Mean
Distribution

Normal Distribution

Source: https://corporatefinanceinstitute.com/resources/data-science/central-limit-theorem/

Even if the objective population has an unknown or non-normal distribution, the mean of
all possible casual samples with n sufficiently large (n>30) will have a normal distribution

- The CLT makes parametric test on sample means (or its linear combination) applicable even if
the assumption of population normality is violated, provided that the sample size is n>30.

11/02/2025 https://lulliter.github.io/R4stats/ 22
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DAY 2 — LECTURE OUTLINE

e Purpose and foundations of inferential statistics
* Population and samples
* Probability and random variables &
* Meaningful probability distributions
* Sampling distributions and Central Limit Theorem

K Getting to know the “language” of hypothesis testing
* The null and alternative hypothesis

* The probability of error? (a or “significance level")

* The p-value probability and tests interpretation

* Types of errors (Type 1 and Type 2)

* Confidence Intervals

\ » Effective vs statistical significance

* Hypothesis tests examples

* Comparing sample mean to a hypothesized population mean (Z test & t test)
* Comparing two independent sample means (t test)
* Comparing sample means from 3 or more samples (ANOVA)

* Acloser look at testing assumptions (with examples)
e Testing two groups that are NOT independent
* Testing if the data are not normally distributed: non-parametric tests
* Testing samples without homogeneous variance of observations

11/02/2025 https://lulliter.github.io/R4stats/
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Getting to know the “language”
of hypothesis testing

(classical approach)
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Statistical Hypotheses

* Any claim made about one or more populations of interest constitutes
a statistical hypothesis

* These hypotheses usually involve population parameters, the nature of the
population, the relation between the populations, and so on

—

* For example, we may hypothesize that:
* The mean of a population, y, is 2
* Two populations have the same variance
e A population is normally distributed, etc.

= L
_— g
W

* Procedures leading to either the acceptance or rejection of statistical
hypotheses are called statistical tests

* The number obtained from the sample to estimate the population
parameter is the point estimate

11/02/2025 https://lulliter.github.io/R4stats/ 25



Hypothesis testing steps

1. State the hypotheses (the null hypothesis and an
alternative hypothesis)

2. Formulate an analysis plan (e.g. the significance level is
0.05, the test method one-sample z-test)

3. Analyze sample data

4. Interpret result and make decision

11/02/2025 https://lulliter.github.io/R4stats/ 26



What are the Null and Alternative hypotheses?

* H, is the hypothesis that a sample data * H, is the hypothesis that a sample data
statistic occurs purely from chance statistic is influenced by some non-random
 e.g.thereis no difference between the cause
mean pulse rate for people doing * e.g.the mean pulse rate for persons
physical exercise and the normal pulse doing the physical exercise is higher
rate than the normal

 Must contain condition of equality =, < ,or > || * Must be true if Hy is false (corresponding to

. . =, < ,or = conditions)
* Test the Null Hypothesis directly: reject Hy or

fail to reject Hy * ‘opposite' of Null Hypothesis

11/02/2025 https://lulliter.github.io/R4stats/ 27



What is the “significance level”, a?

There is always a certain probability of error: that H, is rejected even
though it is actually true.

This probability of this error (Type | error) is called the significance level or a.

* Usually, a significance level is set at 5% or 1% (the error you can tolerate).
For example, a significance level of 0.05 signifies a 5% risk of deciding that
an effect exists (reject Hg) when it does not exist (= FALSE POSITIVE).

e.g. To test the hypothesis (there is no difference between the mean
pulse rate for people doing physical exercise and the normal pulse rate)

1) fix the significance level at 5%

2) measurement of pulse rate conducted over n persons +/- physical
exercise

3) calculate the t-statistics for the sample
4) calculate the p-value associated to the found t

_— —

Lower significance levels require stronger sample evidence to be able to
reject the null hypothesis

11/02/2025 https://lulliter.github.io/R4stats/ 28



What is the p-value?

* The p-value is the probability to obtain our test statistic (or a more extreme value)
if the null hypothesis were true

e i.e.the p-value shows how strongly your sample data contradict the null hypothesis
e Conventionally, we use p-values in conjunction with a to determine whether our
data favor the null or alternative hypothesis:

* p < 0.05means we ‘reject the null hypothesis’ / the ‘effect is statistically significant at 5%
level

Distribution under H,
(one-tailed test)

Reject
(probability a) |
«— Don'treject — ! pratie

critical test
value statistic

Lower p-value represents stronger evidence against the null hypothesis

11/02/2025 https://lulliter.github.io/R4stats/ 29



Another way to think of tests’ accuracy and precision

* Accuracy

«accurate tests» capture what you
want them to measure in an unbiased
way.

* E.g. if your lab measurement gives you

a 3.2 kg for an object that actually
weights 10 kg, it is NOT ACCURATE

* Precision C ww D mm

nor precision
«precise tests» give reproducible, or
reliable results (although not
necessarily accurate)
* E.g...if youweight your object 5 times,
t t

and you get 3.2 kg each time, your

measurement is VERY PRECISE True value True value

Source image: https://www.youtube.com/watch?v=106_LRZwZrc&t=22249s
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The Z-score helps to “standardize” an observation
relative to its frequency distribution

» Z-score helps us understand where a specific observation falls within a distribution

* Consider the Z-distribution, a standardized Normal distribution with ©t = 0and o = 1

e The formula for finding z-scores is the following: Z =

e Where:

* x represents the data point of interest

x—p
o

* pand o represent the mean and standard deviation for the population from which you drew

your sample

EXAMPLE

Using the standard normal distribution
N(u = 0,0 = 1), if a one-month-old
baby girl weighs 5 kg, how does she
compare to others?

A 5 kg weight equals a Z-score of 0.74

11/02/2025
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Mormal, Mean=0, 5tDev=1

0.74

0.2

-3 -2 -1 1] 1 2 3
£-scores 33



https://statisticsbyjim.com/glossary/population/
https://statisticsbyjim.com/glossary/sample/

One-tailed and two-tailed tests of hypothesis

* The choice between a one-tailed and Rejection Region for Null Hypothesis
two-tailed test depends on our -
expectations about the reference left-tailed:
population: [l - Reject H,
* one-tailed test > We know in which []- Do not reject H,

direction the estimate diverges

compared to the population (e.g. there TS
is no difference between the mean 7] critical
pulse rate for people doing physical value
exercise and the normal pulse rate) right-tailed:
H,: p>value | Hy: pu <value
area =a
L critica
value
* two-tailed test > We don’t know in r |
which direction the estimate diverges two-tailed:
compared to the population
Ha: U # value - area=oa
2
critical critical
value value

Source image: https://www.cuemath.com/data/z-test/

11/02/2025 https://lulliter.github.io/R4stats/ 34


https://www.cuemath.com/data/z-test/

Confidence intervals and estimate precision

A possible application of the CLT:

* A confidence interval (Cl) is a range of values that is likely to contain a population
parameter with a certain level of confidence.

Confidence Interval = point estimate +/- margin of error
Cl = x i &

Where g; = (critical value)(sdof the statistic)

o
Cl=x+27*—
R ﬁ

The sample mean X is a point estimate of u

Each sample mean Xx; differs from the next one and from p only by chance
The smaller g; , the more precise will be the sample mean X;

Z is a critical value that depend upon a test statistic

* The estimate precision is evaluated with the Cl, which is an interval with a lower bound

and an upper bound, which likely contains a population parameter with a certain level
of confidence

11/02/2025 https://lulliter.github.io/R4stats/ 35



Frequentist interpretation of a confidence interval

population

]
o, pogo., )
1
2 o o} ) e}
Clincludes true mean
]
1
3 ° ! "gr'e.icludes true mean
4 000 E o o
]
5 @ Ioo o
:
5) :oool oy ©°
1
7 o o00. 0 o
I
8 o E.' o O, °
1
9 , 00 | g0 o o
1
10 ® 04 ,,00
1

Source image: https://vizdata.org/slides/16/16-uncertainty-l.html#/
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Example of constructing a Cl for a mean point estimate

What probability level do we want? (that the interval il contain the
population parameter). We choose 95% which implies:

* 5% probability of error=«
So, for any single sample we draw, we can calculate a range of values (Cl)
on either side of the sample mean equal to:

— (o) — o
CI(95%) = X+ z 5= X + 1'96ﬁ

such that:

* in 95% of all possible samples of size n, u will fall in our
confidence interval

* in 5% of all possible samples of size n, we would miss i

Also, increasing n will reduce the margin of error ¢ for a fixed Z.

11/02/2025 https://lulliter.github.io/R4stats/ 37



Example of constructing a Cl for a mean point estimate

Before we were assuming to know the population standard deviation
parameter o, but we rarely do.

C95%) = X+z— = X+ 1.96%

7

ik

If we don’t know the population sd, we will estimate is with the sample s:

° = X+ 1.96—

C|(95%) = X+ Z\/ﬁ 1

* NOTE: we can use this formula (with the Z statistics) only when the
sample size n is sufficiently large.

11/02/2025 https://lulliter.github.io/R4stats/ 38



Confidence Interval example

Cl (95%) of the mean calculated from 20 random samples of n =100 genes from the human

genome

Length of genes (number of nucleotides)

2012,57 - |

x—1,966/+/n =2012,57

-—I 2811 ,03

1 |x+1,960/+/n =2811,03

=2411,8-1,96*2036,9//100 | |

11/02/2025

| =2411,8+1,96*2036,9//100

. i

|
2500
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DAY 2 — LECTURE OUTLINE

Purpose and foundations of inferential statistics
* Population and samples
* Probability and random variables &
* Meaningful probability distributions
* Sampling distributions and Central Limit Theorem

Getting to know the “language” of hypothesis testing
* The null and alternative hypothesis
* The probability of error? (a or “significance level")
* The p-value probability and tests interpretation
* Types of errors (Type 1 and Type 2)
* Confidence Intervals
» Effective vs statistical significance

Hypothesis tests examples
* Comparing sample mean to a hypothesized population mean (Z test & t test)
* Comparing two independent sample means (t test)
* Comparing sample means from 3 or more samples (ANOVA)

A closer look at testing assumptions (with examples)
e Testing two groups that are NOT independent
* Testing if the data are not normally distributed: non-parametric tests
* Testing samples without homogeneous variance of observations

11/02/2025 https://lulliter.github.io/R4stats/
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Comparing a sample mean to a
hypothesized population mean

EXAMPLE A: Z-test one-sample hypothesis (for large
samples with known population’s variance)
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Our dataset for the day

* We will be working on a datasets described in 2 recent open access articles on
cardiovascular heart diseases

* The original authors (Ahmad, et al., 2017) released also the open access dataset containing
the medical records of 299 heart failure patients collected at a Hospital in Faisalabad
(Punjab, Pakistan), in April-December 2015

* all patients > 40 years old, having left ventricular systolic dysfunction

* age, serum sodium, serum creatinine, gender, smoking, Blood Pressure (BP), Ejection Fraction
(EF), anemia, platelets, Creatinine Phosphokinase (CPK) and diabetes were recorded and
considered for potentially explaining mortality caused by Cardiovascular Heart Disease (CHD)

@PLOS | ONE

RESEARCH ARTICLE
Survival analysis of heart failure patients: A
case study

Tanvir Ahmad, Assia Munir, Sajjad Haider Bhatti*, Muhammad Aftab, Muhammad Ali Raza
Department of Statistics, Government College University, Faisalabad, Pakistan

Chicco and Jurman BMC Medical Informatics and Decision Making (2020) 20:16 . .
https://doi.org/10.1186/512911-020-1023-5 BMC Medical Informatics and

Decision Making

RESEARCH ARTICLE Open Access

Machine learning can predict survival of "’
patients with heart failure from serum o

creatinine and ejection fraction alone
11/02/2025 https://Iullil@r . itai18eiofiRAS tathd Giuseppe Jurman?




QUESTION: Compare the mean platelets count in the patients’
sample against a reference distribution - with known mean ()
and standard deviation (o)

Total Platelet Count distribution Total Platelet Count distribution
(in Reference general Population) (in Sample of heart failure patients)
* Large population study conducted in the US * Sample of 299 patients population study collected
between 2011-2016 on 17,969 adults. in Pakistan in 2015
* Total Platelet Count (TPC) measurement showed a * Total Platelet Count (TPC) measurement showed a
Normal distribution with Normal distribution with
 n=236x103/uL « X=263x103/uL
« ¢ =59 x103/uL ¢« §s=97x103/uL

.008

Density
004
Del
g
o
[
_——1

.002
\

T
0 200 400 600 800 | | !
Platelet count (1000 celis/ulL) ’ = Platelet count { x 151;]80,'&)

O =t T T T 2,000 r—/l = R o |
750

Source: https://pulmonarychronicles.com/index.php/pulmonarychronicles/article/view/558/1223 (left) & author calculations (right)
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Example A (step 1): Expressing the research question in
the form of hypotheses

* | have a sample mean (X = 263) collected measuring Total Platelet Count (TPL)

for heart failure patients and | wonder if such population differs from the
general population (which | know have mean = 236 with o = 59) simply by
chance (Hy), or sampling variability, OR if (H,) the sample mean is different
from the population’s because of some specific effect related to having heart

disease.

 Stating the above hypotheses more formally:

» What is the population Total Platelet Count (TPC) mean for all people who
lure (n_HF)?
* H, : thereis no difference in mean TPC between patients who suffered heart failure
and the general population

Uyr =236 > hypothesis of no effect or (“no difference”)

 H, :thereis a difference in mean TPC between patients who have suffered heart
failure and the general population (“some effect”). This can be formalized as either:

Upr < 236 (one-sided test), or
Uyp > 236 (one-sided test), or
Uyr # 236 (two-sided test)

11/02/2025 https://lulliter.github.io/R4stats/
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Example A (step 2): Formulating an analysis plan

| start by the analysis plan, i.e. how to use sample data to evaluate H
* The evaluation often focuses around a single test statistic

* The analysis plan should specify the following elements

 Significance level (a): conventionally significance levels are chosen equal to
0.01, 0.05, or 0.10; but any value between 0 and 1 can be used.

* Test method to determine in which direction the hypothesized mean differs
significantly from the observed sample mean. Alternative options are:
* the one-sample z-test
* the two-sample t-test
* the two-sample z-test
* eftc.

e Z-tests are closely related to t-tests, but t-tests are best performed when an experiment has a
small sample size, less than 30.
* Also, t-tests assume the standard deviation is unknown, while z-tests assume it is known.
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Example A (step 3a): Analyze sample data: Test Statistic

* Find the value of the test statistic described in the analysis plan. Here:

* Test statistic 2 Z score
 Significance level = 0.05

e Given the assumptions below:

e Patients in the HEART FAILURE were independently sampled

e Large sample with n = 30

* The level of measurement of TPLis interval-ratio
e the sampling distribution of sample means for heart failure patients is normally distributed

Test method = the one-sample z-test

One-sample test of a mean

e Take a sample x of the size n and a standard error se5 ;
*  Compute the z-statistic for the pyr = population mean assuming Hy is true.

Where : IFn > 30 and Standard Error Calculated Z score
2 o X—pu
6“ known sex = — Zogie=—"
\/’ﬁ Ssex
2 S X—HL
0° UNknown ses = Z.aic = o
n—1 *
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Example A (step 3b): Analyze sample data: Test Statistic

In this case, we have:
e alarge sample (n> 100)
« and a known ¢?

We compute the standard error sez= <

7n and the Z-statistic

One-sample hypothesis test of Total Platelet Count mean in a Heart Failure
affected population

Assuming H is true:
* Heart Failure population mean would be = general population mean u = 236

* Given our random sample size n = 299, our sample mean x = 263, the general
population standard deviation o =59, we can compute:

4 59
sex = Nl 3.4120

%—lp 263-236
Z = = = 8.0180
calc = o T 34120
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Example A (step 4): make a decision using the critical region

Given that:

Z ritical = 11.96 (Z score
corresponding to a = 0.05);

Z cqic = 8.0180 actually falls in the
CRITICAL REGION (well beyond the
critical point)

DECISION: we reject the Null
Hypothesis

So the test indicates that indeed there
is a difference between heart failure
patients and the general population in
terms of average platelets count

Sampling distribution of sample means with x = 263 noted in Z

scores

0.4-

0.3

&
Pa

Density of probability
under the null hypothesis

o
-

0.0-

-20

z Test

20
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Example (step 4a): make a decision using the p-value

* The p-value answer the question: “What is
the probability of the observed test
statistic or one more extreme when H, is
true?”

* This is the area under the curve of the
Standard Normal distribution beyond the
Z.

e Convert z statistic to P-value:
 ForH,:uyr >u = p=P(Z>2z)=area
under right-tail beyond z
* ForH, :uyr <u =p=P(Z<2z)=
area under left-tail beyond z
* ForH,: Ugr # U = p=2xo0ne-
tailed P-value

X = 263, with Z.q; = 8.0180

p-value = 0.00000000000000107443 (two-tailed)

Zz Test

0.4-

0.3-

Q
ha

Density of probability
under the null hypothesis

o
-

0.0-

-20 -10 0 10 20

DECISION: highly significant evidence against the Null Hypothesis
Interpretation: Thus, smaller and smaller P-values provide stronger and stronger evidence against H,
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Comparing a sample mean to a
hypothesized population mean

EXAMPLE B: t-test for small samples (n < 30) with
unknown population’s variance)
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[Necessary digression] Student’s t-Distribution

In some cases we use the t-distribution instead of the normal distribution to model the

null hypothesis because:

1. it provides a more accurate representation of the variability in sample means and

2. it enables making reliable inferences, even in situations where the standard normal distribution fails

* |In particular in cases when dealing with small sample sizes or when the population

variance is unknown

* The shape of the t-distribution changes according to the parameter v, which denotes
degrees of freedom and is determined by the sample size (denoted by n):

v=n-1

For small n the t-distribution is a “flattened” version of nhormal

probability density

040

= normal distribution

= t-distribution, v=2
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For larger n, the t-distribution and the normal distribution are
increasingly close

040

035

e
=]

g
w

probability density
g g

normal distribution
—— t-distribution, v=10
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Critical value for the standard normal distribution (z) versus the

t-distribution (t)

Z 0.00 0.01 0.02 0.03 0.04 0.05
0.0 | 050000 050389 050798 051197 051595 —OSI99F
0.1 | 053983 054380 054776 055172 055567 055962
0.2 | 057926 058317 058706 059095 059483 059871
0.3 | 061791 062172 062552 062930 063307 0.63683
0.4 | 0.65542 065510  0.66276  0D.66640 067003 0.67364
0.5 | 069146 069497 0.69847 070194 070540  0.70884
0.6 | 0.72575 092807  0.73237 073365 0.738%1  0.74215
0.7 | 075804 076115 076424 076730 077035 077337
0.8 | 078814 079103 0.7938%9 0.79673  0.79955  0.80234
0.9 | 0.815%4 081859 0.82121 0.B2381 0.8263% (82854
1.0 | 084134 084375 0.84614  0.8484% 083083  0.85314
1.1 | 086433 086650 0.86864 087076 087286  0.87453
1.2 | 088453  0.88686  0.88877  0.8%0065 089251  (0.85435
1.3 | 090320 0950490 050658 090824 (090988 091149
1.4 | 051524 052073 052220 092364 092507 0.92647
1.5 | 093319 093448 093574 093699 093822 093943/

| 1.6 EP%E{} 0.54630 0594738 094845  0.54950
1.7 | 095543 095637 095728 0093818  0.953907 — U559E
1.8 | 096407 096435 0596362 096638 096712 096784
1.9 | 097128 097193 097257 097320 097381 (097441
2.0 | 097725 097778 057831 007882 097932 (0.97982
2.1 | 098214 098257 098300 098341 098382 098422
2.2 | 098610 098645 058679 0098713 098745  (0.98778
2.3 | 098928 098356 098983 099010 099036 0.9%061
2.4 | 099180 055202 059224 099245  0.99266 099286
2.5 | 099379 0993% 099413 099430 099446 099461
2.6 | 099534 099547 059360 099573 099585 (0.99598
2.7 | 099653 099564 099674 099683 099693  0.99702
2.8 0.9?1?& /2 0{3599? 52 099760 @ 099767 099774 (.99781
2.9 | 099813 099819 099825 0.99831 099836 (0.99841

Probability

In the Z distribution, the area to the
left of z = 1.6 is equal to 0.9505,

(the probability of values falling
below this observation is 95.05%)
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Critical value for the standard normal distribution (z) versus the

t-distribution (t)

* |n this case, the critical values t depend on the degrees of freedom df

* The higheris n, the closer are t critical values to Z critical values

1 — Z distribution
1-tailed & 0.025 0.005 (standard normal)
2 -taield 0.05 0.01 E;,dggsigutgogo)
\ t-distribution

df 0.95 0.99 (n smaller than 30)
2 4.303 9.925 I
3 3.182 5.841 I )
4 2.776 4.604 -0 H i 0 7 :[ 3 o
° 25n 4% In the t distribution, thet =?
° 2306 3955 corresponding to an area of 95%
10 2248 3.169 depends on the d.f.:
20 2.086 2.845 e df=100->t=1.984
50 2.009 2.678 e df=50->1t=2.009
100 1.984 2.626 e df=10>1t=2.228
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Example B (step 1): Expressing the research question in the
form of hypotheses

[Let's consider a situation in which the available sample is smaller (n = 23), e.qg. there are
records only for patients who had a follow-up visit in 21days or less.]

 GOAL: make inference on a “hypothetical” population of patients who suffered
heart failure & who have had a follow-up visit within 21 days 2 pyr 214

* QUESTION: the sample mean (x = 263) of Total Platelet Count (TPC) for heart
failure patients differs from the expected mean of a general population (1 =
236, 0 =59 simply by chance (Hy) OR (H,) the sample mean is different from
the population’s because of some specific effect of having heart failure.

* MORE FORMALLY:

* H, :thereis no difference in mean TPC between patients who suffered heart failure
(visited in 21 days) and the mean TPC the general population

Uyr 214= 236 => hypothesis of no effect or (“no difference”)

* H, :thereis a difference in mean TPC between patients who have suffered heart
failure and the general population (“some effect”). This can be formalized as:

UyF 214 # 236 (two-sided test)
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Example B (step 2): Analyze sample data: Test Statistic

* Find the value of the test statistic described in the analysis plan. Here:
* Test statistic 2 Z-score
 Significance level - 0.05

e Given the assumptions below:
e Patients in the HEART FAILURE with follow-up visit in 21 days or less were independently sampled
e “Small” sample withn < 30
e The level of measurement of TPL is interval-ratio
* The sampling distribution of sampling means for heart failure patients is normally distributed

Test method = the one-sample t-test

One-sample test of a mean
* Take a sample x of the size n and a standard error se; |

* Compute the t-statistic for the puyr 304 = population mean assuming Hj, is true.

Where : IFn <30 and Standard Error Calculated Z score
2 o X—u
¢° known Ssex = —— Zeaic = e
\/1—1 sex
2 S X—u
6° UNknown sey = teale = -
n—1 *
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Example B (step 3): Analyze sample data: Test Statistic

In this case, we have:

 asmall sample (n< 30)

« and an unknown ¢?

Hence, we compute the standard error sez = \/%71 and the t-statistic

One-sample hypothesis test of Total Platelet Count mean in a Heart Failure affected
population (<30 d)

Assuming Hy is true:

* Heart Failure population mean pyr 214 would be= general population
meanu = 236

* Ourrandom sample has size n = 23, sample mean x = 251, and standard
deviation s = 102.

* So we compute: sex = \/%— \1/% = 21.90

X—Wp 251-236
sex 21.90

= 0.70

Lealc =
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Example B (step 4a): make a decision using the critical region

Sampling distribution of sample means with x = 251

In a two-tailed test with @ = 0.05 and d.f = noted in t scores

23_1 - 22 t Test

0.4-

the teriticar = £2.0738 (t score
corresponding to @ = 0.05);

Hence, t ., = 0.7080 actually falls in the
ACCEPTANCE REGION

DECISION: Since the t statistic0. 7080 is
less than the t critical value of 2.07 on 22
degrees of freedom at 95% level (P=0.05):
we FAIL to reject the Null Hypothesis

0.3-

Qo
[
'

Density of probability
under the null hypothesis

o
-

0.0-
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Example B (step 4b): make a decision using the p-value

_ X = 252, with t g = 0.7080
* The p-value responds to the question:

“What is the probability of the observed p-value = 0.48 (two-tailed)

test statistic or one more extreme when t Test
H,is true?” o

 This is the area under the curve of the t
distribution beyond the ..

0.3-

e Convert t statistic to P-value:

* ForH,:ppr21a>1 = p=Pltcac | |55,
> teritical ) = area under right-tail g2
beyond z 22

* ForH, :Uyr21a < = p= P(tcalc %,
< teritical ) = area under left-tail
beyond z

* ForH.: My, FHDP=2X "

one-tailed P-value

DECISION: Since the obtained p-value is (much) higher than our significance level a = 0.05, we FAIL to
reject the null hypothesis. We have insufficient evidence proving the difference between the general
population mean TPC and mean TPC of HF patients visited within 21 days is statistically significant.
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To recap: z test or t test?

One sample
How many
samples do i
you have?
*z“" Two sample
independent
Is/are the Are the 2 z-test
sample size(s) samples
=307 independent? Two sample

)
o

Do you know the

paired
z-test

y Cg

One sample
t-test

populations
variance? Py
o T I
How many WO sample

samples do independent
you have? t-test

Are the 2
samples Two sample

independent? paired
t-test
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/2025

Comparing 2 sample means

EXAMPLE C: two samples independent t-test



What changes in two-sample tests type of problems?

1 sample 2 samples
One sample Independent Paired samples
t-Test samples t-Test t-Test

[ - 2 e
- - _ﬂ -
CRA IR I
LR S B Uy

Is there a difference | Isthereadifference Is there a differenceina
between a group and between two groups group between two
the population pointsin time
L i i — i
Independent samples: e.g. patients Dependent samples: e.g. same
receiving treatment v. those patients visited twice: before and
receiving placebo drug after surgery

Source image: https://datatab.net/tutorial /one-sample-t-test
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https://datatab.net/tutorial/one-sample-t-test

Example C (step 1): the research question and the
test hypotheses

[This time, | wonder if there a statistically significant difference between the Total
Platelet Count in the patients who died and the patients who survived heart failure.]

* GOAL: verify if there is a difference between means p1 and

* where: died =1and alive=0

* QUESTION: Is there a statistically significant difference between the mean
values of two groups?

* MORE FORMALLY:
* Hy:puq=pnog = uq1 — o = 0 The two population means are equal

* H,: There is a mean difference between the two groups in the population.
Possible directional difference formulation (two-tailed, left-tailed, right-tailed) :

° H,: pq # 1y © U — Uo # 0 (the two population means are not equal)
c H, - puq1 <pp © uqg — Ko < 0(population 1 mean is less than population 0 mean)

e H,:puq>pg & gy — Ko > 0 (population 1 mean is greater than population 0
mean)
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Example C (step 2): analyze sample data, test
statistic

* ANALYSIS PLAN decisions:
* Data = there is a categorical variable defining 2 groups (DEATH_EVENT = 1 or 0)
* Test statistic 2 two samples’ means comparison
* Significance level = 0.05
* Direction of equality = two-tailed (I don’t have an expectation)
* Test method - ??

* Verify the ASSUMPTIONS for independent (unpaired) t-test:

1. The 2samples ( “died” and “survived”) must be independent*: i.e. a value in one sample must
not influence a value in the other sample

2. The dependent variable is scaled in intervals (Total Platelets Count in 103/uL)

3. The dependent variable is normally distributed (Total Platelets Countin 103/uL)
If the variables are not normally distributed, the Mann-Whitney U test can be used.

4. The variance within the two groups should be similar (F-test or Levene’s test, ...)

If the variances are not equal you should instead perform Welch’s t-test (the R default)

Test method = two sample independent t-test
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Example C (step 3): collect data about the two samples

Boxplot of Total Platelet Count (TPL), grouping by DEATH_EVENT [0,1]

Sample 1 (DEATH_EVENT = 1)
* sizenq =96 800-
e mean TPC X;= 256 (103/uL)
e standard deviation s; =98.5 (103/pL)

Sample 2 (DEATH_EVENT = 0)
* size ny =203
* mean TPC X, = 267 (103/uL)
« standard deviation s, =97.5 (103/uL)

600-

400-

Platelet count (1000 /uL)

Also the last assumption (equal variances)

is verified by the F test of variance 200-
equality
Foe = varl:ance group1 _ cr_g
variance group 2 o,

* and Hy: o7 =07

F test statistic df df2 p Interpretation
1 H, is “equal variances”

1.0205 95 202 0.8915

Equal variances between groups
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p-value = 0.89 > 0.05 - FAIL to rejectH,

died
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Example C (step 4): compute the test statistic for t-Test for
independent samples

* Since we verified the required assumptions, the test method is the independent (two-sample) t-test

e The test statistic is computed with this equation, given:
e the population standard deviation(s) are unknown, but we can assume = variances in 2 groups
* large sample (nq + ny > 100)
Standard Error of the Dif ference obtained as pooled estimate standard deviation of the sampling distribution of the difference

Difference Between Sample Means X1—X2 . X1—X>p
t = = corrected bias) or = ———
cale Standard Error of the Difference 2 2 ( ) 2 2
1 52 51 ,.S2
(n1-1) (nz-1) (n1) (n2)

where:

n, and n, are the sample sizes,

X1 and X, are the sample means,

s? and s> are the sample variances

df =nq;+n, —2 are the degrees of freedom

Results:
Difference Sample Means =-10.28 CI (95%) = [-34.23,+13.66 ]
tcalc = —0.84

p-value = 0.3989
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Example C (step 5): Interpret the results

RECAP:

An independent samples t-test was conducted to compare mean counts of platelets in
patients with heart failure who died and patients with heart failure who survived.

RESULTS INTERPRETATION:

To make a statement about the results of the test (whether the Hj of equal populations
means holds or not) one of the following two values is used:

* p-value (2-tailed)

* The p-value = 0.3989 correspondent to the test statistic t.,. = —0.84 with n;+n;, —2
degrees of freedom is MORE than our chosen significance level (0.05), so we CAN NOT
reject the null hypothesis.

* lower and upper confidence interval of the difference

* The magnitude of the differences in the means Difference Sample Means = -10.28 falls
inside the lower and upper bounds of the Confidence Interval CI (95%) = [-34.23, +13.66
] consistent with the null hypothesis.

DECISION:

We do not have sufficient evidence to say that the mean counts of platelets in between
these two populations is different.
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Other similar cases we cannot review...

* one-sample Tests on proportions?

* two-sample Tests on proportions?
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Comparing sample means from
3 or more samples

EXAMPLE D: using ANOVA test
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Extending comparison to 3 or more groups...

* ANOVA (“Analysis Of Variance”) is an extension of the previous hypothesis testing
ideas, but examined how means of a variable differ across three or more groups

* For this purpose, the means and variances of the respective groups are compared
with each other.

* While the t-test serves with a categorical explanatory variable that has two levels,
(one-way) ANOVA looks at quantitative outcomes and a single categorical
explanatory variable with any number of levels

* There are different types of ANOVA. The most used are:

* ‘one- way’ ANOVA (or one-factor ANOVA) if there is only one explanatory variable
(“treatment”) with two or more levels, and only one level of treatment is applied for a
given subject (e.g. ethnicity)

* ‘two-way’ ANOVA (or two-factor ANOVA), if the levels of two different explanatory
variables are being assigned, and each subject is mapped to one level of each factor (e.g.
ethnicity + treatment type)

* Another distinction refers to the selection of groups:
* with repetition (as in the case the same person interviewed at several points in time)
* without repetition (independent groups)

Example: an oncologist may be interested in knowing whether patients with different types of cancer have
the same average survival times (‘one-way’ ANOVA) under several different competing cancer treatments
(‘two-way’ ANOVA) .
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Formalizing One-Way ANOVA (“Analysis Of Variance”)

* The dependent variable is on a metric scale. In the case of the analysis of variance, the

independent variable (factor) has at least three levels.

e Assumptions for the results of a one-way ANOVA to be valid:

1. Independence of observations — The observations in each group are independent of each
other and the observations within groups were obtained by a random sample.

2. Normally-distributed response variable — The values of the dependent variable follow a
normal distribution.

3. Homogeneity of variance — The variances of the populations that the samples come from are

equal.

* Total Variation = Within Variation + Between Variation

Case A (small variance
within the groups,
large between the
groups)

Case B (large variance
within the groups,
small between the
groups)

11/02/2025

=

Key concept with ANOVA: “within” and “between” variations in the dependent variable values

A

Groupl Group2 Group3

ite Tl 1)

il L FY

Groupl  Group2

Group 3

Source image: hitns//datatabnet/iutoral/anova
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ANOVA: Research application

nl X1 S1

n2 X, s5

= 2

k nk Xy S

MOTIVATION: In general, suppose there are K normal populations with possibly different
means, (11, u2, ..., uK), but all with the same variance o?. To perform the test, K independent
random samples are taken from the populations to obtain K sample means.

QUESTION: Is there a statistically significant difference between the mean values of the k
populations?

MORE FORMALLY:

* Hy:pq=Muy=..=y all Kpopulation means are equal
* H, :notall K population means are equal
To calculate the variation we use the “sum of squares”, like so:
* SSB =Y n,(X; — X)? “sum of squares BETWEEN groups”, with df1=k-1
o SSW =3(X; — X;)? “sum of squares WITHIN groups”, with df2=N-k
e SST =Y(X; — X)? “TOTAL sum of squares”, where df2=N-1

where, X, = mean of each category, X = the “grand mean” of the sample, N = total number of
observation, n;, = number of observations in each group
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Test statistic for ANOVA (“Analysis Of Variance”)

 For ANOVA, the test distribution we use is the F-distribution
* The Ftest (like the t test) requires the degrees of freedom input

* The testisright-tailed: H, is rejected at level of significance a if F ., =2 Fy

 With:

__ Mean Square Between

MSB SSB/ df1

F — —
calc Mean Square Within

MSW _ SSW/df2 with df1=K-1 and df2=N-K

F-Distribution examples

Each F-distribution is
specified by 2 degrees of
freedom parameters
denoted:

* dfl (numerator d.f.)
* df2 (denominator d.f.)

(dh =1,df> =1)

(dfy =10, dfy = 20)

(dfi = 5,dfz = 4)

1 2 3 4 )
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Example D (problem): research question and test
hypotheses

* DATA: A research laboratory developed two treatments aimed at prolonging the survival
times of patients with an acute form of thymic leukemia. To evaluate the potential
treatment effects 33 laboratory mice with thymic leukemia were randomly divided into 3
groups.

* The 15t group received Treatment 1, the 2"d group received Treatment 2, and the 3"
group was observed as a control group (survival times of these mice are given below)

e RESEARCH QUESTION: Is there sufficient evidence to confirm the belief that at least one of
the two treatments affects the average survival time of mice with thymic leukemia?

Mice survivaltimes in days by group

Treatment 2 Control

71 75 77 81
72 73 67 79
75 72 79 73
80 65 78 71
60 63 81 75
65 69 72 84
63 64 71 77
78 84 67
71 91

Source example data: https://saylordotorg.github.io/text_introductory-statistics/s15-04-f-tests-in-one-way-anova.html
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Example D (step 1): analysis plan and hypotheses

* GOAL: Test, at the 1% level of significance, whether the differences between the samples are
large enough to reject the null hypotheses and justify the conclusion that the populations
represented by the samples are different

* Verify the ASSUMPTIONS for One-way ANOVA
1. Independence of observations (assignment to groups was done randomly)
2.  Normally-distributed response variable
3. Homogeneity of variance
* (more on this in the practice session)

e ANALYSIS PLAN decisions:
* Data = thereis a categorical variable defining 3 groups
* Test statistic = F distribution
* Significance level 2 0.01
e Direction of equality = The test is right-tailed: Hy is rejected at level of significance a if F ., = Fq

e HYPOTHESES formalization:
* Hj:pq=puy =p3all Kpopulation means are equal
 H,:atleast one population mean is different from the rest

F __ Meansquare between _  MSB _ SSB/df1
calc = MEan SquareWithin ~—  MSW — SSW /df2

with df1=K-1 and df2=N-K
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Example D (step 2): compute the test statistic for H, (i.e. K
Population Means Are Equal)

* Experiment set up:
* n=33,K=3, sothat degrees of freedom dfl=K-1 = 2 and df2=n-K = 30

* with these samples’ statistics:

Treatment 1 n,=16 X, =69.75 s? =34.47
Treatment 2 n,=9 X,=77.78 s? =52.69
Control ns, =8 X3=75.88 s% =30.69

* The overall sample mean (all 33 observations) is X =73.42

* We compute Means Square Between and Means Square Within:

Y ne(X,—-X)2 16(69.75—73.42)*+9(77.78—73.42)°+8(75.88—73.42)° _ 434.63

_%.32 (71— 24+ . 4+(77-77.7)*+ ..+(81—-75.87)> ,
MSW:Z(XL Xi) :( ) ( ) ( ) _ 11534 _ P
(n—K) 33-3 30

e sothat:
MsB 21731

= 5.65

Fealc = Msw ~ 3845
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Example D (step 3): interpret the results

* The obtained test statistic is:

F . — MST _ 217.31
cale = yog — 38.45

* The test is right-tailed. The single critical value is F, = Fy o1 = 5.39, thus the rejection region is
[5.39, )

= 5.65

a = 0.01
| F
F, =539
b F
| Reject Hy
F =5.65

DECISION: Since F,;. = 5.65 > 5.39, we reject H,.

The data provide sufficient evidence, at the 1% level of significance, to conclude that a treatment
effect exists at least for one of the two treatments in increasing the mean survival time of mice with
thymic leukemia.

NOTE: ANOVA does NOT specify which population means are different. To determine this, you need
to perform post hoc tests, also known as “multiple comparisons” tests.
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Other types of ANOVA...

* Depending on:
* how many explanatory variables (“categories”) we consider

* if samples are assighed with measurement repetition (within-subjects factor) or
without measurement repetition (between-subjects factor)

Without i With
measurement repetition i measurement repetition
¥ ¥ ¥ ] '-E) . '-E) ]

One-factorial

Source image: https://datatab.net/tutorial /two-factorial-anova-with-repeated-measures
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Two-way, repeated measures ANOVA

* Arepeated measures ANOVA is used to compare mean scores across multiple observations of
the same subjects (dependency). It is typically used in two specific situations:

Measuring the mean scores of subjects during three or more time points

Measuring the mean scores of subjects under three or more different conditions.

 Two-factor ANOVA allows to decompose the total dispersion of the data into four components:

1.

2.
3.
4

the share attributable to the 15t factor

the share attributable to the 2"? factor

the share attributable to the interaction between 15t factor and 2" factor

the unexplained, or residual portion

EXAMPLE two-factorial ANOVA with
repeated measures

Taking samples of people with high
blood pressure for each treatment
(1°* factor = treatment) & repeat
their blood pressure measurement
over 3 points in time: before, during
and after the treatment (2nd factor
= time)

11/02/2025
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Repeated measures ANOVA: applications

* In real life there are two benefits of using the same subjects across multiple
treatment conditions:

1. It's cheaper and faster for researchers to recruit and pay a smaller number of
people to carry out an experiment since they can just obtain data from the same
people multiple times

2. We are able to attribute some of the variance in the data to the subjects
themselves, which makes it easier to obtain a smaller p-value («control of
confounders»)

* One potential drawback of experimental design is that subjects might get bored
or tired if an experiment lasts too long («attrition»), which could skew the
results.
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DAY 2 — LECTURE OUTLINE

Purpose and foundations of inferential statistics
* Population and samples
* Probability and random variables &
* Meaningful probability distributions
* Sampling distributions and Central Limit Theorem

Getting to know the “language” of hypothesis testing
* The null and alternative hypothesis
* The probability of error? (a or “significance level")
* The p-value probability and tests interpretation
* Types of errors (Type 1 and Type 2)
* Confidence Intervals
» Effective vs statistical significance

Hypothesis tests examples
* Comparing sample mean to a hypothesized population mean (Z test & t test)
* Comparing two independent sample means (t test)
* Comparing sample means from 3 or more samples (ANOVA)

A closer look at testing assumptions (with examples)
* Testing two groups that are NOT independent
* Testing if the data are not normally distributed: non-parametric tests
* Testing samples without homogeneous variance of observations
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What if the assumptions did not hold?

Revisit the ASSUMPTIONS we verified for independent (unpaired) t-test:

1. The response variable must be expressed through an interval and ratio scale
(quantitative variable - continuous scale)

2. What if the 2 groups/samples are NOT independent (e.g. taken via before &
after surveysf‘-’

* We use the dependent sample t-test (or paired t-test)

Average Difference measurement Xdi .
tealc = ge Diff : = —2L \ith df=n—1
Standard Error of the Difference \/

Stziiff
n

3. What if dependent variable is NOT normally distributed?

* The normality assumption is more important for small sample sizes than for larger
sample sizes Ybut if it is hard to verify, we rely on our domain knowledge)* we use
(nonparametric tests that doesn’t assume normality)

* For INDEPENDENT SAMPLES we can perform Mann-Whitney U test (or Wilcoxon rank-sum
test as in R) -- best for continuous variables

. For_PQIIRED SAMPLES we can perform Wilcoxon signed-rank test -- OK with ordinal
variables

4. What if variance within the two groups is NOT similar? (F-test, Levene’s test,...)
* We can perform Welch’s t-test (the R default)

[We will learn the R code in the PRACTICE SESSION]
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UNMET ASSUMPTION 1)

The two groups are not independent: paired
t-tests

EXAMPLE E: two (paired) small samples

11/02/2025
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Example E (step 2): Question: Is the difference
between two PAIRED samples statistically significant?

[This time, Let's imagine a statistics test is administered to the same group of 12
students before & after attending a workshop (&) ]

20

e Given the assumptions:
* outcome variable is interval scaled

15

grades

* the differences of the paired values are
normally distributed

* independence ¥
* (observations are paired by design)

before after

* We use the dependent t-Test for

. : i Distribution of the difference (normal)
paired samples, with the following

hypotheses:

®

* H,:the mean grades before and after
the workshop are equal

* H, :the mean grades before and after
the workshop are different

Probability
=
N

=20 =10 0 10
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Example E (step 3): Interpret the results

* The paired dependent t-Test (to evaluate H, : before # after) basically is
executed on the mean of the paired differences x ;. The test statistic £ is:
Xdiff =0
Sex

‘ tbefore—after -
Sdiff
\/ﬁ
* In this case (two-sided H,, n =12, and df =11, « = 0.05), we obtain t =-1.88,
with p-value = 0.087.

* with standard error of the mean se; =

e Since p-value >0.05, this results suggests that there is no statistically significant
difference between the before and after means.

* Therefore, at the 5% significance level, we do not reject the null hypothesis that
the grades are similar before and after the workshop @

t df P
before - after | -1.88 11 .087
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UNMET ASSUMPTION IllI)

If the data are not normally distributed: non-
parametric tests

EXAMPLE F: using Wilcoxon Rank Sum Test

11/02/2025
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Example F (step 1): Compare two independent sample when
the data are not normally distributed

[Let’s go back to the HEART FAILURE dataset but /ookin% at the levels of Creatinine
Phosphokinase (CPK) in the blood, an enzyme that might indicate a heart failure or injury]

* GOAL: verify if the difference in CPK levels in the blood of the survivors versus
those who died after heart failure is statistically significant or only due to
sampling error.

* From the sample | get:
* X = 582 the general sample mean (withs = 970)

* Xsurvived = 670 sample mean for group of survived patients (with S, vived = 754)
* Xgiea = 540 sample mean for group of dead patients (with s4;.q = 1,317)

e MORE FORMALLY: | want to run a test to verify whether my sample’ statistics

represent an actual difference in the respective hyﬁothetical populations SHa)
or if there is no difference between the two hypothetical populations (H

* Hj :thereis no difference in mean CPK between patients who suffered heart failure
and died versus patients who survived after heart failure

Ucpk died = McPK survived —2 hypothesis of no effect or (“no difference”)

 H, :thereis a difference in mean CPK between patients who suffered heart failure
and died versus patients who survived after heart failure (“some effect”).

UcPK died # HCPK survived (two-sided test) or
HcPK died < HcPK survived
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Example F (preliminary check): visually check the “normality”
assumption for parametric testing

We can graphically confirm that CPK is not normally distributed by using:
1. the density plot, in which we can see the distribution is not bell shaped

2. the QQ plot (or Quantile-Quantile plot) for large samples — data points should roughly fall along a
straight diagonal line when the dataset follows a normal distribution.

survived Quantile-Quantile plot for CPK levels in blood
8000 - .
0.0015- .
0.0010 -
6000 - .
0.0005 - .
— .
E 4000
N "
00000~ O
g dead 2
3 £
1]
3 V4
0.0015 2000- /
0.0010-
0 . a®
0.0005 -
0.0000- ' — — "'ﬁl 3 -2 -1 0 1 2 3
0] 2000 4000 6000 2000

Theoretical
creatinine_phosphokinase
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Example F (preliminary check): confirming a “normality”
assumption violation with tests

e We can confirm that CPK is not normally distributed by using tests for normality:
1. Shapiro-Wilk test
2. Kolmogorov-Smirnov test

* The null hypotheses are defined as:

* Hy: CPK distribution is normal
e Hj: CPK distribution is not normal

* The test has been run over each group:
* Evidently, we reject the H, !

Shapiro-Wilk Normality Test results

creatinine survived 0.6277141 0.000000000000000000008509006
phosphokinase | died 0.4392427 0.000000000000000019922527779
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Example F (step 2): compare independent samples
using a non parametric test

* Since we verified that the explained variable (CPK) is NOT normally distributed we will
run a Wilcoxon Rank Sum test (equivalent to the Mann-Whitney U test) to compare two
independent samples

* ltisconsidered to be the nonparametric equivalent to the two-sample independent t-test

* ASSUMPTIONS:
* Ordinal or Continuous dependent variable: the variable you’re analyzing, e.g. CPK levels
* Independence: All of the observations from both groups are independent of each other
* Shape: The shapes of the distributions for the two groups are roughly the same

DATA creatinine_phosphokinase by DEATH_EVENT_f
Statistic W = 9460
p-value = 0.684

RESULTS: since the test statistic is W =9460 and the corresponding p-value is 0.684 > 0.05, we
fail to reject the null hypothesis.

We do not have sufficient evidence to say that CPK levels for dead patients is less than that of
survived patients (Lcpk died < HcPK survived)
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UNMET ASSUMPTION 1V)

The variances of the two groups are not
homogeneous

EXAMPLE G: using t test with the Welch
correction
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Example G (step 1): Compare two independent sample
when the variance is not homogeneous

[Once again we use HEART FAILURE dataset but look at the levels of Serum sodium in the blood, a mineral
that serves for the correct functioning of muscles and nerves]

* GOAL: verify if the difference in Serum sodium levels in the blood of the survivors versus those who died
after heart failure is statistically significant or only due to sampling error.

* From the sample | get:
* X = 136 milliequivalents per liter (mEg/L) the general sample mean (with s = 4.41)

* Xsurvived = 137 sample mean for group of survived patients (with S¢,-vived = 3.98)
* Xgiea = 135 sample mean for group of dead patients (with s4;.q4 = 5.00)

* MORE FORMALLY: I want to run a test to verify whether my sample’ statistics represent an actual
difference in the respective hypothetical populations (H,) or if there is no difference between the two
hypothetical populations (Hg)
* Hj :thereis no difference in mean serum sodium between patients who suffered heart failure and died
versus patients who survived after heart failure

Hdied = MUsurvivea ~2 hypothesis of no effect or (“no difference”)

* H, :thereisadifference in mean serum sodium between patients who suffered heart failure and died
versus patients who survived after heart failure (“some effect”).
Pdied # Psurvivea (two-sided test) or

Hdied < Hsurvived
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Example G (preliminary check): visually check the
“HOV” assumption for parametric testing

* Once again, plotting the data offers a graphical intuition that the variance of
observations in the two groups seem not homogenous

e recallthat o = sd?

Mean (-/[+SD) serum sodium (mEq/L) by group

. * : l"‘. i".-‘-:l ¢ ®
dead .o L L .
. l- l':' " :l‘.l

survived .

120 130 140
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Example G (preliminary check): confirming a “HOV”
assumption violation with tests

* It is always best to use an actual test to confirm this intuition. So in this case we can
use the Fisher's F test to verify equal variances of Serum Sodium concentration in the

two groups

* The null hypotheses are defined as:

L2 o . . .
* Hg: adled asurvwed > 05 ,4/0 Sumwed 1 (The true ratio of variances is equal to 1)

© Hi:10500 # Olrvived 2 Odioa] Olurvivea # 1 (The true ratio of variances not equal to 1)

F test to compare two variances

e | gouws | sasic | pawe

survived F=1.5769,
Serum Sodium , num df = 95, p-value =0.007646
died denom df =202

* | use the P-value as a decision rule, which leads me to reject the null
hypothesis since it is lower than 0.05 conventional alpha level
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Example G (step 2): compare independent samples
using a specification of the t test

* Since we verified that the explained variable (Serum Sodium in the blood) is NOT
homogeneous in variance, we will run a t test with the Welch correction to
compare two independent samples

* Unequal variance is compensated by lowering the degrees of freedom

DATA serum_sodium by DEATH_EVENT _f
Statistic t=-3.1645
df=154.01

p-value =0.001872

RESULTS: since the test statistic is t =-3.1645 (with df = 154.01) and the corresponding p-value
is 0.001872 < 0.05, we reject the null hypothesis.

We therefore have sufficient evidence to say that the level of serum sodium levels for dead
patients is significantly different than that of survived patients

ﬂserum_died + ﬂserum_survived
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Classification of Hypothesis Test
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Type of Test | Level of Sample characteristics Correla
Measure tion
One Two Samplm K samples (i.e. >2)
Sam])le
IndePendent DePendent Independent DePendent
Parametric | Interval or | Z-testor l]:ldﬂPEﬂdEﬂt Paired One way Repeated
Test Ratio ttest samPle t- samPle t- ANOVA measure Pearson's
test test ANOVA T test
Non- Categmcal Chi Chi square McNemar C]:li—square Cochran's
Parametric | or square test test test QTest
Test nominal test
Speznnm
Rank or Chi Mamn- Wilcoxon | Kruskal Friedman’s | (P) test
ordinal square Whitneyu— signed— Wallis test test
test test rank test
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