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WORKSHOP SCHEDULE

⚫ Modules
• 1. Intro to R and data analysis

• 2. Statistical inference & hypothesis testing

• 3. Modeling correlation and regression

• 4 Mapping causal & predictive approaches

• 5. Machine Learning

• 6. Extra topics: 

• MetaboAnalyst; 

• Power Analysis

⚫ Each day will include:
• Frontal class (MORNING)

• Practical training with R about the topics discussed in the morning. 
(AFTERNOON)
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DAY 3 – LECTURE OUTLINE

• Testing and summarizing relationship between 2 variables (correlation)

• Pearson’s 𝒓 analysis (parametric)
• 2 numerical variables  

• Spearman test (not parametric)

• 2 numerical variables (non linear relationships)

• Measures of association 

• Chi-Square test of independence 

• 2  categorical variables

• Fisher’s Exact Test

• alternative to the Chi-Square Test of Independence

• Introduction of regression analysis

• Simple linear regression models

• Multiple Linear Regression models
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Summarizing relationships 
between two variables

Correlation

11/02/2025 https://lulliter.github.io/R4stats/ 4



Defining correlation

• Correlation is a numerical summary statistic that measures the strength 
of a linear relationship between two variables
• denoted by r (correlation coefficient) which takes values between -1 and 1 

Source: Vu, J., & Harrington, D. (2021). Introductory Statistics for the Life and Biomedical Sciences . Retrieved from https://www.openintro.org/book/biostat/

positive
correlation

negative 
correlation

11/02/2025 https://lulliter.github.io/R4stats/ 5

https://www.openintro.org/book/biostat/


Most used measures of  correlation

Correlation 
coefficient

Type of 
relationship

Levels of measurement
Data 
distribution

Pearson’s r 
(ρ for population)

Linear
Two quantitative (interval or 
ratio) variables

Normal 
distribution

Spearman’s 𝒓𝒔 
(ρ for population)

Non-linear
Two ordinal, interval or ratio 
variables

Any distribution

Cramér’s V 
(Cramér’s φ)

Non-linear Two nominal variables Any distribution

Kendall’s 𝝉 (tau) Non-linear
Two ordinal, interval or ratio 
variables

Any distribution
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What is the link between correlation and covariance? 

• Covariance is another helpful statistic that tells whether both variables vary in 
the same direction (positive covariance) or in the opposite direction (negative 
covariance)

• Unlike in correlation, there is no meaning of covariance numerical value only sign is 
useful

• 𝐶𝑜𝑣 𝑋, 𝑌  is  > 0  --> 𝑋, 𝑌  vary in the same direction 

• 𝐶𝑜𝑣 𝑋, 𝑌  is  < 0  --> 𝑋, 𝑌  vary in the opposite direction 

• 𝐶𝑜𝑣 𝑋, 𝑌  is  ~ 0 --> 𝑋, 𝑌  vary independently from each other  

• The general formula for Covariance is: 

𝐶𝑜𝑣 𝑋, 𝑌 =
σ𝑖=1

𝑛 (𝑥𝑖  − ҧ𝑥)(𝑦𝑖  − ത𝑦)

𝑛 − 1

• Interesting to note that: 

𝐶𝑜𝑟 𝑋, 𝑌 =
𝐶𝑜𝑣 𝑋, 𝑌

𝑠𝑥𝑠𝑦
• where 𝑠𝑥  is the standard deviation of x and 𝑠𝑦  is the standard deviation of y

• dividing Covariance by 𝑠𝑥𝑠𝑦 , we obtain Correlation  r with range [-1, +1] 
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Correlation between 2 
numerical variables

Pearson’s correlation (parametric test)
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Pearson’s correlation

Pearson correlation (𝐫) measures a linear association between 2 CONTINUOUS 
variables (𝑥 and 𝑦 )  or 2 dichotomous variables
• It’s also known as a parametric correlation test because it depends to the 

distribution of the data. 
• The Pearson correlation evaluates the linear relationship between two continuous

variables. 

FORMULA

𝐫 =
σ x − mx y − my

σ x − mx
2 σ 𝑦 − 𝑚𝑦

2

WHERE:
𝑥 and 𝑦 are two vectors of length n
𝑚𝑥 and 𝑚𝑦 correspond to the means of x and y, respectively.

We can test the statistical significance of the correlation statistic as well.
The p-value (significance level) of the correlation can be determined by calculating

t value = 𝑟
n−2

1−r2
with  𝑑. 𝑓. = (𝑛 − 2)
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Correlation between 2 
numerical variables

Spearman’s correlation (non parametric test)

11/02/2025 https://lulliter.github.io/R4stats/ 10



Spearman’s rank order correlation coefficient

Spearman’s correlation (𝑟𝑠 or 𝜌(𝑟ℎ𝑜)) is a nonparametric alternative to Pearson’s
correlation, used for

• continuous data with a non linear, monotonic relationships, or

• ordinal data (e.g. Likert scale survey questions: strongly agree, agree, etc.)

FORMULA 𝜌 = 𝑟𝑠 = 1 −
6 σ 𝑑𝑖

2

𝑛 𝑛2−1

•  where:
•  𝑟𝑠   is Spearman's coefficient of rank correlation.
• 𝑑𝑖  is the difference between the ranks for each (x, y) pair.
•  𝑛 is the number of paired observations.

 Hypothesis Test: Rank Correlation 

 𝑡 = 𝑟𝑠
𝑛−2

1−𝑟𝑠
2
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Chi Squared Distributions

A widely used analytical tool
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The chi-squared (𝝌𝒌
𝟐)distribution

• The chi-squared distribution (𝝌𝒌
𝟐) is a family 

of continuous probability distributions

• It results from the sum of squares of k 
normally distributed random variables, where 
k is the number of degrees of freedom (df)

• The mean is equal to the df and the variance 
is equal to 2 x df
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Applications of the Chi-Square Test

• Unlike the Normal distribution, very few real-world observations follow a chi-
square distribution, but it is used extensively in hypothesis testing (also due to 
its close relationship with the normal).

• As k increases, the 𝝌𝒌
𝟐 distribution looks more and more similar to a normal distribution

• The Chi-square test helps to answer the following questions:

1. Independence test

• Are two categorical variables independent of each other? 
• for example, does gender have an impact on whether a person has a Netflix subscription 

or not? 

2. Distribution (or Goodness of fit) test 

• Are the observed values of two categorical variables equal to the expected values? 
• One question could be, is one of the three video streaming services Netflix, Amazon, and 

Disney subscribed to above average? 

3. Homogeneity test

• Are two or more samples from the same population? 
• One question could be whether the subscription frequencies of the three video streaming 

services Netflix, Amazon and Disney differ in different age groups. 
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Correlation between 2 
categorical variables

Chi Squared test of independence  
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A useful tool for categorical variables: contingency 
tables 

• A contingency table summarizes data for 2 categorical variables (each value in 
the table representing the times a particular combination of outcomes occurs) 

• Below we see 2 categorical variables “gender” (male, female) and “has Netflix 
subscription” (yes, no) 

• The row totals (counts across each row) and the column totals (counts across 
each column) are the marginal totals

• Frequencies can also be shown as proportions 

Frequency SUM

Male Female

Netflix yes 10 13 23

Netflix no 15 14 29

SUM 25 27
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Computing the Chi-Square Test of Independence

• E.g. suppose we are testing the independence of the two categorical variables “gender” 
(male, female) and “has Netflix subscription” (yes, no) 

• The test performs a comparison of these two contingency tables:

IMPORTANT ASSUMPTIONS TO NOTICE: 

• The assumption for the chi-squared (𝝌𝟐) test statistic is that the expected frequencies per 
cell are > 5 

• The chi-squared (𝝌𝟐) test uses only the categories but NOT rankings 
 

Expected Frequency

Male Female

Netflix yes (23x25)/52 = 11.06 (23x27)/52 = 11.94

Netflix no (29x25)/52 = 13.94 (29x27)/52 = 15.06

Observed Frequency

Male Female

Netflix yes 10 13

Netflix no 15 14
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Computing the Chi-Square Test of Independence 
(computation)

• Let’s compute the example for the two variables “gender”  and “has Netflix subscription” 

• The chi-squared (𝝌𝟐) test statistic is calculated via:

𝝌𝟐 =  σ𝑲=𝟏
𝒏 (𝑶𝒌−𝑬𝒌)𝟐

𝑬𝒌
=

(𝟏𝟎−𝟏𝟏.𝟎𝟔)𝟐

𝟏𝟏.𝟎𝟔
 + 

(𝟏𝟑−11.94)𝟐

11.94  + 
(𝟏𝟓−13.94)𝟐

13.94  + 
(𝟏𝟒−15.06)𝟐

15.06 = 𝟎. 𝟑𝟓 

• where:

• 𝑶𝒌 = observed frequency and 

• 𝑬𝒌 = Expected frequency  =  𝑓 𝑖, 𝑗 =
𝑅𝑜𝑤𝑆𝑢𝑚 𝑖  × 𝐶𝑜𝑙𝑢𝑚𝑛𝑆𝑢𝑚(𝑗)

𝑁
  

• calculated for each cell in the contingency table

• The test assumptions are: 

• H0: (null hypothesis) The two variables are independent.

• H1: (alternative hypothesis) The two variables are not independent. (i.e. they are associated)

•  d. f. = (𝒏𝒓𝒐𝒘𝒔−𝟏)(𝒏𝒄𝒐𝒍−𝟏) = 𝟏 

Expected Frequency

Male Female

Netflix yes (23x25)/52 = 11.06 (23x27)/52 = 11.94

Netflix no (29x25)/52 = 13.94 (29x27)/52 = 15.06

Observed Frequency

Male Female

Netflix yes 10 13

Netflix no 15 14
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Interpreting the Chi-Square Test of Independence

• The chi-squared (𝝌𝟐) test statistic calculated value:

𝝌𝟐 = 𝟎. 𝟑𝟓 

• BY THE CRITICAL REGION: Looking at the 𝝌𝟐 distribution, for a significance level 
of 5% and a df of 1, the critical chi-squared value = 3.841   

• → Since the calculated chi-squared value=𝟎.𝟑𝟓 is smaller, we FAIL TO REJECT the null (H0:  The 
two categorical variables are independent)

• BY THE p VALUE: Also, the p-value associated to the 𝜒2 = 0.35 and 

     d. f.  = (𝑛𝑟𝑜𝑤𝑠−1)(𝑛𝑐𝑜𝑙−1) = 1 is 0.5541.
• → Since this p-value is not less than 0.05, we fail to reject the null hypothesis. 

• This means we do not have sufficient evidence to say that there is an association 
between gender and political having a Netflix account! 
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Chi Squared test (another 
application) 

Goodness of Fit Test for one categorical 
variable

11/02/2025 https://lulliter.github.io/R4stats/ 20



Chi-Square Goodness of Fit Test

• GOAL: a Chi-Square goodness of fit test is used to determine whether or 
not a categorical variable follows a hypothesized distribution.
• With high goodness of fit, the values expected based on the model are close to 

the observed values

• With low goodness of fit, the values expected based on the model are far from 
the observed values

• EXAMPLES OF APPLICATION:  
• Is this sample drawn from a population with 90% right-handed and 10% left-

handed people?
• Do offspring have with an equal probability of inheriting all possible genotypic 

combinations (i.e., unlinked genes)?

• HYPOTHESIS FORMULATION
• Null Hypothesis  (H0): The population follows the specified distribution.
• Alternative Hypothesis (Ha): The population does not follow the specified 

distribution.
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Chi-Square Goodness of Fit Test (computation)

• FORMULA: The formula is essentially the same as in the independence test 

 𝝌𝟐 =  σ𝑲=𝟏
𝒏 (𝑶𝒌−𝑬𝒌)𝟐

𝑬𝒌
 

•  where 𝑶𝒌 = Observed Frequencies and 𝑬𝒌 = Expected Frequencies 

• … with 𝒅𝒇 = 𝒏 − 𝟏 (number of groups minus 1)

• WHEN SHOULD WE USE IT?  (assumptions) 

1. We are testing the distribution of one categorical variable 

• if you have a continuous variable, it should be converted to categorical (this is called data 
binning) or a different test can be used (like the Kolmogorov–Smirnov goodness of fit test 
for continuous variables) 

2. The sample was randomly selected from the population.

3. There are a minimum of 5 observations expected in each group.
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Chi-Square Goodness of Fit Test (example)

• GOAL:  examine the appropriateness of hypothesized distribution for a dataset

• CASE: In the FAMuSS study (we’ll see later in the lab) volunteers were observed at a 
university, so we test if their distribution by categorical variable race is the same as 
(i.e. representative of) the general US population?   

 𝝌𝟐 =  σ𝑲=𝟏
𝒏 (𝑶𝒌−𝑬𝒌)𝟐

𝑬𝒌
 =

(𝟐𝟕 −𝟕𝟔.𝟏𝟔)𝟐

𝟕𝟔.𝟏𝟔
+

(𝟓𝟓 −𝟓.𝟗𝟓 )𝟐

𝟓.𝟗𝟓
+

(𝟒𝟔𝟕−𝟒𝟕𝟖.𝟑𝟖)𝟐

𝟒𝟕𝟖.𝟑𝟖
+

(𝟒𝟔 −𝟑𝟒.𝟓𝟏)𝟐

𝟑𝟒.𝟓𝟏
==

𝟒𝟒𝟎. 𝟏𝟖 
•  where 𝑶𝒌 = Observed Frequencies and 𝑬𝒌 = Expected Frequencies 

• … with k = 4, and 𝒅𝒇 = 𝒏 − 𝟏 = 𝟑 (number of groups minus 1)

• The 𝝌𝟐 statistic is extremely large, and the associated p-value < 0.001 → 

• We reject the null hypothesis (𝑯𝟎 = the sample proportions should equal the 
population proportions)… in fact, we can see for example the higher Asian 
representation in sample
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Correlation between 2 
categorical variables - Fisher’s 

Exact Test

(alternative to the Chi-Square Test of 
Independence)  
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Fisher’s Exact Test

• Fisher’s Exact Test is used to determine whether or not there is a 
significant association between two categorical variables.

• It is typically used as an alternative to the Chi-Square Test of 
Independence when one or more of the cell counts in a 2×2 table is less 
than 5.

• Fisher’s Exact Test uses the following null and alternative hypotheses:
• H0: (null hypothesis) The two variables are independent.

• H1: (alternative hypothesis) The two variables are not independent.
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Calculate effect size after a Chi-
Square Test

3 alternatives to assess “strength” of the 
association (if any) 
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Three Ways to Calculate Effect Size for a Chi-Square Test

• So, we have seen 2 commonly used Chi-Square tests:
• Chi-Square Test for Independence: Used to determine whether or not there is a significant 

association between two categorical variables from a single population.
• Chi-Square Test for Goodness of Fit: Used to determine whether or not a categorical variable 

follows a hypothesized distribution

• For both of these tests, we obtain a p-value that tells us “if” an association is found 
(i.e. we should reject the null hypothesis of the test or not).

• Then, we may wonder about the effect size of the test (i.e. “how strong” an 
association is)

• There are 3 ways to measure effect size: 
1. Phi (φ) 

• for 2 x 2 contingency table

2. odds ratio (OR)
• for 2 x 2 contingency table

3. Cramer’s V (V) 
• for larger tables 

• example in lab

11/02/2025 https://lulliter.github.io/R4stats/ 27



Correlation between… 1 
numerical variable and 1 

categorical variables

… we have actually met before 
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Correlation between 1 numerical variable and 1 
categorical variables 

• Recall that we have already encountered methods for for comparing 
numerical data across groups in the previous lessons 

1. Using side-by-side boxplots  for visual comparison of how the 
distribution of a numerical variable differs by category

2. Using One-Way ANOVA for testing relationships between Numerical and 
Categorical variables

• i.e. the extension of the t-test for more than 2 groups
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When and why do Regression Analysis?

• Regression the most widely used method of comparison in data 
analysis. I can be specified as:

1. Simple Regression Analysis uncovers mean-dependence between 2 
variables

2. Multiple Regression Analysis involves more variables

• Regression is a method used for different purposes: 
1. In CAUSAL ANALYSIS: to uncover the effect of one variable on another 

variable

2. In PREDICTIVE ANALYSIS : to assess what to expect of a variable for 
various values of another variable  
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Simple Linear Regression

Regression analysis is a widely used method 
for prediction and – given the proper 
experimental conditions – for causal 

explanation
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Simple linear regression: example 

• Regression models are highly valuable, as they are one of the most common ways to 
make inferences and predictions

• Linear regression is OK with data that exhibit linear or approximately linear 
relationships

• Simple linear regression is a statistical method you can use to understand the 
relationship between two variables, 𝑥 (the predictor variable) and 𝑦 (the response 
variable)
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Functional (linear) relationship and regression

• The correlation coefficient gave us information about the degree to 
which points (corresponding to 𝑥 and 𝑦 pairs) were clustered around a 
straight line … but nothing about the slope of that line

• regression analysis, instead, provides this kind of information:

• we want to know  exactly how those 2 variables are related

• (given we hypothesized a linear relationship) the model has a functional 
form that provides an intercept and a slope: 

𝒚 = 𝒃𝟎 + 𝒃𝟏𝒙
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Linear regression (Ordinary Least Square)

• The OLS regression line is chosen as to minimize the 
difference between estimated values and actual ones 

• in fact, OLS seeks the minimum sum of squared 
distances between each point and the regression 
line

• it is the “best fitting” line given any data of points

• NOTE: like with previous inferential statistics methods, 
we are making statements on the population of interest 
based on some sample data available

Population data of interest Sample data we have

𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙 + 𝜺 ෝ𝒚 = 𝒃𝟎 + 𝒃𝟏𝒙 +𝒆

𝑦 = true Y values (dependent/response variable) ො𝑦 = estimated (or predicted) Y values based on X values

𝒙 = true X values (independent/explanatory variable) 𝒙 = sample X values  

𝛽0 = true intercept 𝑏0 = estimated intercept 

𝛽1 = true slope/coefficient on x 𝑏1 = estimated slope/coefficient on x 

𝜀 = true residual or unobserved part of y 𝑒 = estimated residual (error),or unobserved part of Y)
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OLS Linear regression interpretation

• The formula for the line of best fit is written as:

ෝ𝒚 = 𝒃𝟎 + 𝒃𝟏𝒙 +𝒆

• where ො𝑦 is the predicted value of the response variable (height), 𝑏0 is the y-
intercept, 𝑏1 is the regression coefficient, and 𝑥 is the value of the predictor 
variable (weight).

• For example, in the case of :

ෝ𝒚 = 𝟑𝟐. 𝟕𝟖𝟑𝟎 + 𝟎. 𝟐𝟎𝟎𝟏𝒙

• 𝒃𝟎 = 32.7830. This means when the predictor variable weight is 0 pounds, 
the predicted height is 32.7830 inches.

• Sometimes the value for 𝑏0 can be useful to know, but not in this specific example 

• 𝒃𝟏 = 0.2001. This means that for a one unit increase in the 𝒙 variable, the 𝒚 
variable is predicted to increase(decrease) by 0.2001 units. Here, a one pound 
increase in weight is associated with a 0.2001 inch increase in (expected height), on 
average.

• NOTE: just like with previous hypothesis testing on sample means etc., we are testing the 
coefficients (𝒃𝟎 and 𝒃𝟏) for statistical significance under H0: the coefficient = 0  
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Assumptions of linear regression

• For the results of a linear regression model to be valid and reliable, we 
need to check that the following four assumptions are met:

1. Linear relationship: There exists a linear relationship between the 
independent variable, x, and the dependent variable, y

2. Normality: The residuals of the model are normally distributed.
• Check normality (OF RESIDUALS) with the known methods (QQplot, Shapiro-

Wilk, Kolmogorov Smirnov)

3. Homoscedasticity: The residuals have constant variance at every level 
of x.

4. Independence: The residuals are independent. In particular, there is 
no correlation between consecutive residuals in time series data.
• This is mostly relevant when working with time series data. Ideally, we don’t 

want there to be a pattern among consecutive residuals.
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Diagnostic plotting: residuals

A residual is the vertical distance
between a data point and the regression
line. yi – ŷi

• yi: The actual response value for the 
ith observation

• ŷi: The predicted response value based on 
the multiple linear regression model

We want to see a residual plot where data 
shows random scatter above and below the 

horizontal line

In the example on the right:

• Case 1) linear model is a particularly good 
fit!

• Case 2) the original data cycles below and 
above the regression line

• Case 3) the variability of the residuals is 
not constant; the residuals are slightly 
more variable for larger predicted values.

Best fitting 
line

(corresponding) 
Residual plots

1

2

3
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Diagnostic plotting: normality of residuals

• The residuals of the model are normally distributed.

• Check normality (OF RESIDUALS) with the known methods (QQplot, Shapiro-
Wilk, Kolmogorov Smirnov)
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Diagnostic plotting: Homoscedasticity

• ASSUMPTION: The residuals (i.e. the error term) have constant variance at 
every level of x (“homoscedasticity”)

• When this is not true, the results of the regression model might be unreliable

• This assumption can be verified by:
• the “Residual vs. Fitted” plot

• the Breusch-Pagan Test or the White Test
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The Coefficient of Determination or “R Squared” (R2)

• One way to measure how well the least squares regression line “fits” the data is 
using the coefficient of determination, denoted as 𝑹𝟐.

• 𝑹𝟐 is the proportion of the variance in the response variable that can be 
explained by the predictor variable.

• 𝑹𝟐 can range from 0 to 1. 

• A value close to 0 indicates that data is very spread around the regression line (this 
doesn’t necessarily mean that the model is a bad fit, rather that the data is naturally 
noisy) 

• A value close to 1 indicates that the response variable can be perfectly explained 
without error by the predictor variable.

• For example, an 𝑹𝟐 of 0.2 indicates that 20% of the variance in the response 
variable can be explained by the predictor variable; an  𝑹𝟐 of 0.77 indicates that 
77% of the variance in the response variable can be explained by the predictor 
variable

• BEWARE OF MISINTERPRETATION: 𝑹𝟐 measures variability around a regression 
line… it doesn’t tell if the model is a good fit or even reasonable !! 

• To assess the performance of linear models, 𝑹𝟐 must be considered along with other 
measures (e.g. the Residual Standard Error or the significance level of the regression) 
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Multiple Linear Regression 

Regression analysis can be used to estimate 
the linear relationship between a response 

variable and several predictors
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Multiple linear regression: formally
• A multiple linear regression model takes the form:

Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + … + 𝛽𝑝X𝑝 + ε

• where:

• Y: The response variable

• X𝑗: The jth predictor variable

• 𝛽𝑗: The average effect on Y of a one unit increase in X𝑗, holding all 
other predictors fixed

• ε:  The error term

• The values for 𝛽0 , 𝛽1, 𝛽2, … , 𝛽𝑝  are chosen using the least square 
method, which minimizes the sum of squared residuals (RSS):

RSS = σ(𝑦𝑖 − ො𝑦𝑖)2 

• where:

• Σ : A greek symbol that means sum

• 𝑦𝑖 : The actual response value for the ith observation

• ො𝑦𝑖 : The predicted response value based on the multiple linear 
regression model
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Multiple linear regression: example

• [We’ll revisit this in the lab, using the PREVEND dataset]

• STUDY: Statins are a class of drugs widely used to lower cholesterol (which can increase risk 
for adverse cardiovascular events). However, treatment with a statin might be associated 
with an increased risk of cognitive decline. Adults of older age are at increased risk for 
cardiovascular disease, but also for cognitive decline

• GOAL: Examine the association of statin use with cognitive ability in an observational cohort, 
but also accounted for age in the analysis as it could be a potential confounder in this setting

• HYPOTHETICAL MODEL: 𝑅𝐹𝐹𝑇 𝑠𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽𝑠𝑡𝑎𝑡𝑖𝑛(𝑆𝑇𝐴𝑇𝐼𝑁) + 𝛽𝑎𝑔𝑒  (AGE) + ε

Source: Vu, J., & Harrington, D. (2021). Introductory Statistics for the Life and Biomedical Sciences . Retrieved from https://www.openintro.org/book/biostat/

red dots  = Statin users
blue dots  = not Statin users

RFFT score   = 
cognitive 
function test,  
with 0 = worst
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Multiple linear regression: interpreting predictors coefficients

Given our model, we have obtained this  prediction equation: 
𝐸(𝑅𝐹𝐹𝑇) =  137.8822 + 0.8509(𝑆𝑇𝐴𝑇𝐼𝑁) −  1.2710 AGE

• ESTIMATE for a coefficient 𝑏𝑗  is the predicted mean change in ො𝑦𝑖  corresponding to a 1 unit 

change in x𝑗 , when the values of all other predictors remain constant. E.g.: 
• an increase of 1 year of  age is associated with a decrease of -1.2710 in RFFT score, when statin use is 

the same
• for 2 individuals of the same age, the RFFT score will be 0.8509 higher for the one taking statins

• [STD. ERROR, T-STATISTIC, P-VALUE]: For each coefficient the model tests the H0 : 𝑏𝑗  = 0 
• the association between RFFT score and statin use is not statistically significant, but the association 

between RFFT score and age is significant
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Assumptions for (multiple) linear regression

Similar to those of simple linear regression…

1. Linearity : For each predictor variable x𝑗, change in the predictor is linearly related 
to change in the response variable y when the value of all other predictors is held 
constant.
• It is not possible to make a scatterplot of a response against several simultaneous 

predictors. Instead, we use a modified residual plot to assess linearity

2. Normality of residuals: The residuals are approximately normally distributed.
• Verified with normal probability plots (Q-Q plots etc.) 

3. Homoscedasticity (constant variability): The residuals have approximately 
constant variance at every level of x. 
• Verified by plotting the residual values on the y-axis and the predicted values on the 

x-axis

4. Independent observations: Each set of observations (y, x1, x2, … , x𝑘) is 
independent

5. (NEW!) No multicollinearity: i.e. no situations when there is a strong linear 
correlation between the independent variables, conditional on the other variables 
in the model
• multicollinearity may lead to imprecision or instability of the estimated parameters 

when a variable changes
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Using residuals to check model assumption 1 (on 
individual predictors)

• Assess linearity with respect to age using a scatterplot with residual values on 
the y-axis and values of age on the x-axis

• There does not seem to be remaining nonlinearity with respect to age after the 
model is fit.
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Using residuals to check model assumption 1 (on 
individual predictors)

• Assess linearity with respect to statin use using a scatterplot with residual 
values on the y-axis and values of age on the x-axis

• It is not necessary to assess linearity with respect to statin use since it is measured as 
a categorical variable. A line drawn through two points (that is, the mean of the two 
groups defined by a binary variable) is necessarily linear

NOT 
MEANINGFUL 
with respect to 
categorical 
explanatory 
variable!
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Using residuals to check model assumption 2 (Normality 
of residuals)

• As in Simple Regression we use Q-Q plots
• The residuals are reasonably normally distributed, with only slight departures from 

normality in the tails.
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Using residuals to check model assumption 3 
(Homoscedasticity)

• As in Simple Regression we plot plot the residual values on the y-axis and the 
predicted values on the x-axis

• It seems reasonable to assume approximately constant variance.
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Checking assumption n 6 (no multicollinearity) 

• It can be assessed by studying the correlation between each pair of 
independent variables, or even better, by computing the variance inflation 
factor (VIF)

• The VIF measures how much the variance of an estimated regression coefficient 
increases, relative to a situation in which the explanatory variables are strictly 
independent. 

• A high value of VIF is a sign of multicollinearity (the threshold is generally at 5 or 10) 

• The easiest way to reduce the VIF is to remove some correlated independent 
variables, or eventually to standardize the data.

Not an issue 
in our 

dataset/ 
model
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Variability in the response explained by the model: R2 and 
Adj. R2 in multiple regression

• As in simple regression, 𝑹𝟐 represents the proportion of variability in the response 
variable explained by the model

• As variables are added, 𝑹𝟐 always increases

• 𝑨𝒅𝒋. 𝑹𝟐 incorporates a penalty for including predictors that do not contribute much 
towards explaining observed variation in the response variable

• 𝑨𝒅𝒋. 𝑹𝟐 does not have an inherent interpretation, but it is useful while comparing models with 
different explanatory variables

• Resid. Std. Err . (square root of the residual mean squared errors ) is the estimated 
standard deviation of the error of the regression equation and is a good measure of the 
accuracy of the regression line. 
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F statistic in multiple regression

• Again, the F-test of overall significance indicates whether this linear regression model 
provides a better fit to the data than a hypothetical model that contains no independent 
variables (known as the “intercept model”)

• H0: (null hypothesis)  The intercept model fits the data as well as your model. 

• H1: (alternative hypothesis) Your model fits the data better than the intercept-only model

• In this case p-value is extremely small, we have sufficient evidence to conclude 
that this model fits the data better than intercept-only model

• NOTE: in general, if none of the independent variables are statistically 
significant, the overall F-test is also not statistically significant
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Model performance: ideas for further investigation

• The PREVEND data came from a a cross-sectional study, i.e. not  from a study in which 
participants were followed as they aged (i.e., a longitudinal study)

• So, while the model indicates that older patients tend to have lower RFFT scores, we 
cannot conclude that RFFT scores decline with age in individuals

• only repeated measurements of RFFT taken as (the same) individual participants aged could rule 
out some explanatory effect of unobserved differences across different age cohorts

• We found that age was a confounder: was it the only one?

• Other potential confounders could be education level (also associated to access to health care) 
and the  presence of cardiovascular disease (can lead to vascular dementia and cognitive decline)

• Residual confounders —frequent in observational studies— can be other variables in a dataset 
that have not been examined, or variables that were not measured in the study   

• A randomized experiment is the best way to eliminate residual confounders, since it 
ensures that, at least on average, all predictors are not associated with the exposure (i.e. 
one source of confounding: selection bias). 

The details of how a study was designed and how data were collected should 
always be taken into account when interpreting study results.
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Adding a categorical predictor with several levels to the model
 
• In a regression model with a categorical variable with more than two levels (e.g. education level), 

one of the categories is set as the reference category. The remaining categories each have an 
estimated coefficient

• Each predictor levels can be thought of as binary variables that can take on either 0 or 1

𝐸(𝑅𝐹𝐹𝑇) =  40.94 +  14.78(𝐿𝑜𝑤𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑)  +  32.13(𝐻𝑖𝑔ℎ𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑)  +  44.96(𝑈𝑛𝑖𝑣)

• EXAMPLE: predicted RFFT for individuals in Lower Secondary Education level

𝐸(𝑅𝐹𝑇) =  40.94 +  𝟏𝟒. 𝟕𝟖(𝟏)  +  32.13(𝟎)  +  44.96(𝟎) = 55.72 

𝑷𝒓𝒊𝒎𝒂𝒓𝒚 is not in 
the model because 
it is the implicit 
reference level (i.e. 
the intercept value 
40.94) 
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Adding a interaction term to the model specification
• A statistical interaction occurs when the effect of one explanatory variable X1 on the response Y 

depends on the level of another explanatory variable X2

• Let’s go back to the NHANES dataset and consider a linear model that predicts total cholesterol 
level (mmol/L) from age (yrs.) and diabetes status.

• Comparing 2 alternative models:
1. MLR without interaction: E(TotChol)  = β0 + β1(Age) + β2(Diabetes) 

2. MLR with interaction:       E(TotChol)  = β0 + β1(Age) + β2(Diabetes)+β2(Diabetes x Age) 

• Model 2 acknowledges the relationship between cholesterol and age depends on diabetes status 
(i.e. it “allows” the relationship of X1 

with the Y to vary based on the values of X2)

Linear model on entire sample Linear model by category (Diabetics or not) 
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Multiple linear regression: recap

• Multiple linear regression is a generalization of simple linear regression to 
address the relationship between a response variable Y and several 
predictors X𝑗, where k is the number of predictors

• including logical, interval/ratio, or categorical predictors, as well as interaction terms

• to interprete categorical predictors (>2 levels) one of the category’s levels is set as the 
reference, each remaining level has an estimated coefficient = estimated change relative 
to the reference

• Typical applications of multiple linear regression are:
1. PRIMARY PREDICTOR: Estimating an association between a response variable and 

primary predictor of interest, while adjusting for possible confounding variables 
• this is the case of the previous example! (Examining the association between statin use and 

cognitive ability, adjusting by age)

2. EXPLANATORY MODELS: Constructing a model that effectively explains the observed 
variation in the response variable; in other words, to build a predictive model for a 
response variable
• different techniques may be adopted in model selection (i.e. different specifications where we 

add/subtract explanatory variables)

• A parsimonious model (few variables) is usually preferred over a complex model
• R2 and Adjusted R2 can be useful to compare models

• In particular Adjusted R2  helps to balance predictive ability with complexity in a multiple 
regression model
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More advanced topics on REGRESSION…

• This lecture is just an introduction but there is a wide array of topics pertaining 
to regression analysis… 

• Here are some of the many variants and advancements over the linear 
regression model: 

• LOGISTIC REGRESSION: if the dependent variable is dichotomous (0,1)  or nominally 
scaled

• POISSON REGRESSION: if the dependent variable is count over a period of time

• COX PROPORTIONAL HAZARDS REGRESSION: for modeling censored data 

• FUNCTIONAL TRANSFORMATIONS: quadratic, exponential …. 

• GENERALIZED LINEAR MODELS (GLMs): an extension of the linear model where the 
modelling of error is not Gaussian

• PANEL REGRESSION MODELS: special regression models that can make use of both 
the temporal and the inter-individual variation if you have longitudinal data (or time-
series cross-sectional or panel data)
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