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WORKSHOP SCHEDULE

⚫ Modules
• 1. Intro to R and data analysis

• 2. Statistical inference & hypothesis testing

• 3. Modeling correlation and regression

• 4 Mapping causal & predictive approaches

• 5. Machine Learning

• 6. Extra topics: 

• MetaboAnalyst; 

• Power Analysis

⚫ Each day will include:
• Frontal class (MORNING)

• Practical training with R about the topics discussed in the morning. 
(AFTERNOON)
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DAY 6 – Extra TOPICS

⚫ MetaboAnalyst
• Overview

• Workflow

⚫ Power analysis
• Hypothesis testing

• Decision errors

• Statistical power

• Effect size

https://lulliter.github.io/R4stats/ 311/02/2025



DAY 4 – LECTURE OUTLINE

⚫ MetaboAnalyst
1. Overview

2. Workflow

⚫ Power analysis
1. Hypothesis testing

2. Decision errors

3. Statistical power

4. Effect size

11/02/2025 https://lulliter.github.io/R4stats/ 4



MetaboAnalyst

An R-driven Software
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Introduction to MetaboAnalyst

⚫ it is a free web-based platform
⚫ it works with R but it has a friendlier GUI: anyone can make 

metabolomics data analysis, interpretation and integration with other 
omics data 

⚫ the whole metabolomics community uses it!!!

…but

⚫ you need a statistical background to interpret the MetaboAnalyst 
outputs and to get the most of it!

https://www.metaboanalyst.ca 
From raw spectra to biomarkers, patterns, functions and systems biology
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MetaboAnalyst overview

Source: Xia, J., Wishart, D. Nat Protoc 6, 743–760 (2011).
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MetaboAnalyst workflow
1) data upload

Test data 1:
Binned 1H NMR spectra of 50 urine 
samples using 0.04 ppm constant
width (Psihogios NG, et al.) 
Group 1- control; 
Group 2 - severe kidney disease.
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MetaboAnalyst workflow
2) data filtering
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MetaboAnalyst workflow
3) data normalization
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Effect of normalization over sample

MetaboAnalyst workflow
3) data normalization
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Effect of features/metabolites scaling

MetaboAnalyst workflow
3) data normalization
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«Classical» analysis of 
variance among groups

Machine learning algorithms

MetaboAnalyst workflow
4) statistical analysis
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MetaboAnalyst workflow
4) univariate analysis
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MetaboAnalyst workflow
4) univariate analysis
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MetaboAnalyst workflow
5) chemometric analysis
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MetaboAnalyst workflow
5) chemometric analysis
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MetaboAnalyst workflow
5) chemometric analysis

11/02/2025 https://lulliter.github.io/R4stats/ 18



MetaboAnalyst workflow
5) chemometric analysis

Heatmap of the top 25 T-test features
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Identifying the metabolic pathways deregulated by a pathology
is finding a target for pharmacological therapy!

Source: https://www.behance.net/gallery/38270165/Metro-Map-of-Metabolism-The-Overview
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MetaboAnalyst workflow
6) enrichment analysis

Test data 2:
Urinary metabolite
concentrations from 77 
cancer patients measured by 
1H NMR. 
Phenotype:
N - cancer cachexic;
Y - control
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MetaboAnalyst workflow
6) enrichment analysis
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MetaboAnalyst workflow
6) enrichment analysis

Enrichment analysis, based on
the globaltest, tests associations
between metabolite sets and the
outcome.
The algorithm uses a generalized linear
model to compute a ‘Q-stat’ for each
metabolite set.
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MetaboAnalyst workflow
6) enrichment analysis
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MetaboAnalyst workflow
6) functional interpretation
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MetaboAnalyst workflow

Source: Xia, J., Wishart, D. Nat Protoc 6, 743–760 (2011).

Metabolic pathway analysis and visualization
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DAY 4 – LECTURE OUTLINE

⚫ MetaboAnalyst
1. Overview

2. Workflow

⚫ Power analysis
1. Hypothesis testing

2. Decision errors

3. Statistical power

4. Effect size
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Hypothesis testing steps

1. State the hypotheses (the null hypothesis and an alternative 
hypothesis)

2. Design the analysis (e.g. the significance level is 0.05, the test 
method one-sample z-test)

3. Analyze sample data

4. Interpret result and make decision
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What are the Null and Alternative hypotheses? 

• 𝑯𝟎 is the hypothesis that a sample data 
statistic occurs purely from chance

• e.g. there is no difference between the 
mean pulse rate for people doing 
physical exercise and the normal pulse 
rate

• Must contain condition of equality =, ≤ ,or ≥ 

• Test the Null Hypothesis directly: reject 𝑯𝟎 or 
fail to reject 𝑯𝟎

Null Hypothesis 
𝑯𝟎

• 𝑯𝟏 is the hypothesis that a sample data 
statistic is influenced by some non-random 
cause

• e.g. the mean pulse rate for persons 
doing the physical exercise is higher 
than the normal

• Must be true if 𝑯𝟎 is false (corresponding to 
=, ≤ ,or ≥ conditions)

• `opposite' of Null Hypothesis

Alternative Hypothesis 
𝑯𝟏 or 𝑯𝒂 
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Decision Errors

Two types of errors can result from a hypothesis test. 

⚫ Type I error occurs when the researcher rejects a null hypothesis
when it is true. The probability of committing a Type I error is called
the significance level. This probability is also called alpha, and is
often denoted by α. 

⚫ Type II error occurs when the researcher fails to reject a null
hypothesis that is false. The probability of committing a Type II error
is called Beta, and is often denoted by β. The probability of not
committing a Type II error is called the Power of the test. 
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Summarizing Type I and Type II Errors

α = P(H1|H0) 
β = P(H0|H1)

Fail to reject  H0 Reject H0 

H0 is true
 

Correct action 
Type I error

FALSE POSITIVE 

probability 1- 

H1 is true Type II error
FALSE NEGATIVE

Correct action 

probability  power = 1-
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Which is worse: false-positive or false-negative?

Fail to reject  H0 Reject H0 

H0 is true TRUE NEGATIVE FALSE POSITIVE 

probability 1- 

H1 is true FALSE NEGATIVE TRUE POSITIVE

probability  power = 1-

Example 1. Covid-19 test:

• False-POSITIVE: The test confirm the infection although
you do not have the virus. You have to quarantine
yourself, even though you are OK.

• False-NEGATIVE: The test did not detect the presence of
the virus in your body, although you do have the virus.
You become a walking distribution centre for the virus!!

Example 2. Quality control in a pharma production company

• False-POSITIVE: The test declared a product faulty. We
throw away a product that should be on the shelves.

• False-NEGATIVE: The test declared a faulty product as a
faultless product. The risks are very high: a defective
pharmaceutical product can even harm the end user (the
patient).

Example 3. Disease diagnosis

• False-POSITIVE: a patient receives a faulty diagnosis of
disease and then later realizes that the diagnosis was
wrong, maybe after more tests.

• False-NEGATIVE: someone who has a disease is not
provided proper medical treatment, which could be fatal.

Example 3. Criminal court

• False-POSITIVE: an innocent citizen is found guilty and is
sent to prison or receives the death penalty

• False-NEGATIVE: a criminal is declared innocent and
escapes punishment
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Controlling Type I and Type II Errors

⚫ α, β, and n are related

⚫ when two of the three are chosen, the third is determined

⚫ usually the researcher fix the type I error () he can tolerate
before experiment and then compare the p-value and takes a 
decision
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Controlling Type I and Type II error

Figure 1: Equal costs for false positives and 
false negatives. 

Figure 2: Greater cost for false positives than
false negatives

Figure 3: Lowered uncertainty through more 
informative features. 

Criminal court example
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p-value

The p-value corresponds to the answer the question: what is the probability of 
the observed test statistic or one more extreme when H0 is true? 

11/02/2025 https://lulliter.github.io/R4stats/ 35



p-value interpretation

⚫ A very small p-value means that such an extreme observed outcome would be very
unlikely under the null hypothesis.

⚫ Usually the researcher fix  before experiment and then compare the p-value and
takes a decision.

Conventions
P > 0.10 ⇒ non-significant evidence against H0 
0.05 < P ≤ 0.10 ⇒ marginally significant evidence against H0
0.01 < P ≤ 0.05 ⇒ significant evidence against H0
P ≤ 0.01 ⇒ highly significant evidence against H0 
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Fail to reject  H0 Reject H0 

H0 is true
 

Correct action 
Type I error

FALSE POSITIVE 

probability 1- 

H1 is true Type II error
FALSE NEGATIVE

Correct action 

probability  power = 1-

Power
1-

Type II error


How to increase statistical power
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How to increase statistical power

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214

1) Raise significance level alpha (the WRONG way)
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How to increase statistical power

2) Switch from a 2-tailed test to a 1-tailed test (CORRECT if possible)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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How to increase statistical power

3) Increase mean difference (or increase the effect size)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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How to increase statistical power
4) Use z distribution instead of t distribution (appropriate when we know the 
population mean)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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How to increase statistical power
5) Decrease standard deviation (using more precise measurements to have less
error and less noise)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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How to increase statistical power
6) Increase sample size (the most practical way)

Source: https://towardsdatascience.com/5-ways-to-increase-statistical-power-377c00dd0214
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Effect size

The effect size is an estimate of the difference between two or 
more groups.

The measurement of the effect size depends on the type of 
analysis your are doing:

1. Studying the mean difference between two groups

In this case you use a standardized mean difference (Cohen’s d)
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Effect size

Cohen’s d Effect size

0.20 Small

0.5 Medium

0.8 Strong
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Effect size

2) Pearson Correlation Coefficient: measuring the linear 
association between two variables X and Y. 

-1 = perfectly negative linear correlation between two variables

0 = no linear correlation between two variables

1 = perfectly positive linear correlation between two variables

Source: https://www.statology.org/effect-size/

r = 0.94 r = 0.03
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Effect size

r Effect size

0.1 small

0.3 medium

>0.5 large

Pearson Correlation Coefficient
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Effect size in different scenarios

Test Effect Size Small Medium Large 

All t-tests:
• one-sample t-test
• independent samples t-test 
• paired samples t-test

Cohen’s d

d = 
x1 − x2

s

0.20 0.50 0.80

Difference between many means 
(ANOVA)

Cohen’s f

f =
η2

1−η2

0.10 0.25 0.40

Chi-squared test Cohen’s 

= σ𝑖=1
𝑚 (𝑝1𝑖−𝑝0𝑖)2

𝑝0𝑖

0.10 0.30 0.50

Pearson’s correlation coefficient Pearson’s 𝑟 0.10 0.30 0.50

Linear Regression (entire model) Cohen’s  f 2

f 2 =
R2

1 − R2

0.02 0.15 0.35

Source: https://en.wikipedia.org/wiki/Effect_size#Overview
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